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Fuel-Saving Cruising Strategies for Parallel HEVs

Shaobing Xu, Shengbo Eben Li, Member, IEEE, Huei Peng, Bo Cheng, Xiaowu Zhang, and Ziheng Pan

Abstract—This paper studies the fuel-optimal cruising strate-
gies of parallel hybrid electric vehicles (HEVs) and their
underlying mechanisms. To achieve fuel-optimal operations, a dis-
continuous nonlinear optimal control problem is formulated and
solved using the Legendre pseudospectral method and the knotting
technique. Three optimal cruising strategies in free/fixed-speed
cruising scenarios are proposed: vehicle speed pulse-and-glide
strategy, state-of-charge (SoC) pulse-and-glide (PnG) strategy,
and constant-speed strategy. The performance and optimal behav-
ior of the engine and the motor are presented, and their fuel-saving
mechanisms are explained. Finally, two principles to compromise
between fuel economy and ride comfort are proposed and studied.

Index Terms—Eco-driving, hybrid electric vehicle (HEV), opti-
mal control, pseudospectral method, pulse and glide (PnG).

I. INTRODUCTION

IGHTENING fuel economy standards and environmental

concerns continue to pressure the automotive industry
into improving the fuel economy of road vehicles [1]-[3].
Technologies such as clean combustion, lightweighting, hybrid
powertrains, and intelligent transportation systems have been
developed and deployed [4], [5]. Hybrid electric vehicles
(HEVs) from Toyota, Ford, Honda, and General Motors have
demonstrated significant potential for fuel savings [6], [7].
HEVs are equipped with an energy buffer such as a battery or
a supercapacitor [8]-[10]. Hybrid powertrains make it possible
to downsize the engine, avoid inefficient engine operation, and
execute braking energy recuperation, leading to better fuel
economy compared with conventional vehicles [10].

The fuel economy of HEVs depends on a variety of factors,
including its powertrain configuration, component sizing, and
control strategy [9], [10]. Many optimization-based and rule-
based control rules have been developed to improve the fuel
economy of HEVs in diverse driving scenarios and cycles
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[11]-{13]. In this paper, we focus on designing fuel-optimal
control strategies in cruising scenarios for parallel HEVs. Par-
allel hybrid powertrains are used in Honda, Hyundai, and many
European hybrid vehicle models [14], [15]. Cruising consumes
a significant portion of the total energy, that is, 35% under urban
conditions [16] and even higher on the highways. Research has
shown that coach buses spend 65%—78% of their total driving
time cruising on the freeways in Beijing [17]. It was estimated
that a 1% fuel savings in cruising scenarios can save 20 million
barrels of oil per year worldwide [18].

In cruising scenarios, constant-speed (CS) operation is fre-
quently used. For conventional vehicles, this means operating
the engine and transmission at a constant state. Instead of the
CS strategy, vehicles can cruise in a pulse-and-glide (PnG) fash-
ion, which is a strategy commonly used in super-mileage com-
petition vehicles [19], [20]. The PnG strategy has been proven
to achieve better fuel economy than the CS operation, with up to
20% fuel savings [20]-[22]. Lee et al. validated the fuel-saving
performance in experiments [19]. For nonhybrid vehicles with
a continuously variable transmission (CVT), Li and Peng pro-
vided analytical results of how the PnG strategy works [20],
[21]. In this case, the vehicle inertia acts as a kinetic “energy
buffer.” It allows the engine to operate efficiently and intermit-
tently, resulting in a higher average efficiency than the CS opera-
tion [20]. Despite the better fuel economy, the fluctuating speed
of the PnG strategy leads to deteriorated ride comfort [19]-[21].

Parallel HEV's contain both electric energy buffer (i.e., battery)
and mechanical “energy buffer” (i.e., vehicle inertia). The addi-
tional energy buffer expands the freedom in power management.
Instead of “swinging the vehicle speed high and low,” the battery
state of charge (SOC) can be fluctuated as an alternative to im-
proveride quality. In fact, both vehicle kinetic energy and battery
energy can be rocked back and forth for optimal fuel economy
or better tradeoff between fuel economy and ride comfort.

The main contribution of this paper is to systematically study
how the dual-energy-storage system can be used for optimal
fuel economy and its tradeoff against ride comfort. More specif-
ically, 1) we first study the fuel-optimal cruising strategy for
parallel HEVs, including the coordination between mechanical
energy buffer and the battery energy buffer. 2) The underlying
fuel-saving mechanism is then explained. 3) Two simple rules
to compromise between fuel economy and ride comfort are
then proposed. The rest of this paper is organized as follows:
Section II describes the model of a parallel HEV and the fuel-
optimal cruising problem, Section III presents the method for
solving the problem, Section IV presents the optimal cruising
operations under different speed constraints, Section V ana-
lyzes the fuel-saving mechanisms of the optimal operations, and
Section VI presents the rules to compromise between fuel econ-
omy and ride comfort. Finally, Section VII concludes this paper.

0018-9545 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1.

II. HYBRID ELECTRIC VEHICLE MODEL
AND PROBLEM STATEMENT

The studied parallel HEV involves a mechanical and an
electric powertrain, with its topology shown in Fig. 1. The
main components are the internal combustion engine, CVT,
clutch, battery, motor, torque coupler, and vehicle. The power
generated by the engine can be used to drive the vehicle and/or
to charge the battery. The engine and the motor can drive
the vehicle individually or together. This section describes the
models of these components.

Since our goal is to obtain the control rules for the engine
and motor to minimize fuel consumption, the problem naturally
fits into an optimal control framework, with engine power and
motor power as control inputs. The performance index, plant
dynamics, and constraints of this fuel optimal control problem
(OCP) are described as follows.

For simplicity, the following assumptions are made.

1) The dynamics of the fly-wheel, clutch, CVT, and motor

are ignored.

2) The engine always operates on the best brake-specific

fuel-consumption (BSFC) line by using the CVT.

A. Performance Index for Fuel Economy

The index “fuel consumption per 100 kilometers” is used to
measure the fuel economy, which is defined as

[y! Fedt
sf

J= ey
where ty, F., and s; denote the terminal time, the engine fuel
injection rate, and the terminal distance, respectively.

The engine BSFC map is shown in Fig. 2(a), where the
point with maximum efficiency is called the sweet spot (power:
18.9 kW; efficiency: 38.3%).

The best BSFC line, which is the collection of the most
efficient points for varying power levels, is shown in Fig. 2(a).
Its efficiency 7. is fitted by

3

Ne :770+Zkz(Pe_P0)%
=1

©))

where 79 and k; are the fitting coefficients, P. is the engine
power, and Py is a constant. The fitting result is shown in
Fig. 2(b). Since the engine always operates on the best BSFC
line, the engine fuel injection F, rate is obtained by

Cg X Ne(Pe)

where ¢, is the calorific value of gasoline. If the engine is shut
off, then F, = 0.

3
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Fig. 2. Engine model. (a) BSFC map (in grams per kilowatt-hour). (b) Effi-
ciency of the best BSFC line.

Note that all of the energy stored in the battery is derived
from the engine, making the battery an energy buffer rather than
an original source. To ensure charge sustenance, the initial and
terminal states of the SOC are constrained to be the same in this
fuel-optimal cruising problem.

B. Vehicle Dynamics for Control

In the parallel HEV, the engine and the motor can drive
the vehicle together or separately. Based on the force balance
equations, distance s and velocity v satisfy

5=

ncPe + Py, — Fr.(v)v

f[]:

Mo
F.(v) = 0.5 CppaAyv® + Mgf (4)

where 7n¢ is the efficiency of the CVT, P,, is the motor power,
F. is the aerodynamic drag and rolling resistance, Cp is the
aerodynamic drag coefficient, p, is the air density, A, is the
frontal area of the vehicle, f is the rolling resistance coefficient,
and M and g represent the vehicle mass and the gravity
constant. If the engine is off, the clutch can be disengaged to
avoid engine drag, that is, P, = 0. The motor power P,, can
be either negative or positive, corresponding to charge mode or
discharge mode, respectively.

The speed ratio i¢ of the CVT determines the ratio between
the vehicle speed and the engine speed, i.e.,

iov
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Fig. 3. Motor efficiency as a function of motor speed and torque.

where w, is the engine speed, i is the speed ratio of the final
drive, and r, is the tire radius. The mechanical efficiency of the
CVT is nonlinear and depends on its speed ratio and load. For
push-belt CVT, under high-speed ratio or high-power condi-
tions, the efficiency is high (about 85%—-90%); otherwise, it will
rapidly deteriorate to about 70% [23], [24]. For hybrid vehicles,
since the engine can eliminate low-power operations, the CVT
can avoid inefficient operations. Under this assumption, the
CVT efficiency is simplified as a ¢ constant.

In addition to the given vehicle dynamics, the battery dynam-
ics is expressed as [25]

so0 - Voo = /VE — 4Py x R

2Rint x C

(6)

where SOC stands for the state of charge of the battery, V.
is the battery voltage, R;, is the internal resistance, C' is the
battery capacity, and P, is the battery power.

Battery power P, relies on motor power P,,. In the charge
mode, the motor acts as a generator and charges the battery.
Both P, and P, are negative with the following relationship:

Py, = Pynm Pp <O. @)
In the discharge mode, P, and P,, are both positive and
governed by the following relationship:

P,

P,

Prn =0 ®)

Tim

where 7,, is the efficiency of the motor, as shown in Fig. 3. It
depends on motor speed w,, and torque 715,,.

In this powertrain topology, motor speed w,, is related to the
vehicle speed, i.e.,

ZIm,iO'U

©))

Wm = r
w

where i, is the gear ratio of the torque coupler. Motor torque
T, is then obtained from

P

wﬂ’l,

Tm

(10)

We assume that the generator efficiency map is identical to the
motor efficiency map, i.e.,

nm(wmaTm) :nm(wmv_Tm)~ (11)
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C. Constraints for Inputs and States

Equality and inequality constraints arise from the physical
limits of the engine, CVT, battery, and motor, including

Pe,min é Pe S Pe,max

Z'C,min < Z.C < Z'C,max

SOCmin < SOC < SOCmax

< Tm < Tm,max

Tm,min

S wﬂ’l, S wm,max- (12)

Wm,min

In the cruising problem we are solving, initial velocity vy and
terminal velocity vy are set to be equal, i.e.,
vg = Vy. (13)

Similarly, the initial and terminal states of the SOC are also
forced to be the same, i.e.,

SOC, = SOC;. (14)

D. Optimal Control Problem
The resulting OCP is stated as follows:
[y Fedt
Sf

min J =

subjectto s =w

b_nCPe'f'Pm_FT(’U)U
N Muv

SO'C:_VOC_ \Y4 ‘/;26_4Pb ><-Rint

Rint x C

P
_mPTYI,ZO

m

Ponm P <0

P, =

Vo = Vf
SOC, = SOC;

Pe min < Pe < Pe max
tC,min < 1o < 10, max
SOChin < SOC < SOChyax
Trnmin < Tin < Tinmax

Wm,min é Wm S Wm,max- (15)

The states are distance s, velocity v, and SOC, which are
denoted as & = (s,v,SOC)T. The control inputs include en-
gine power P, and motor power P,,, which are denoted as
u = (P., P,,)T. Except for the engine model and the motor
model introduced in Section II-A and B, the other parameters
are listed in Table 1.
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TABLE 1
KEY PARAMETERS OF THE VEHICLE DYNAMICS
Parameters Value Parameters Value
M 1450 kg Mo -10.06
Cp 0.28 P, 3 kW
A, 252 m’ P, max 60 kW
Da 12 kg/m3 Py min 0
f 0.015 i¢,max 04
T 0287 m ¢ min 42
iy 33 Wi max 1200 rad/s
im 2.63 Win,min 0
Ne 0.88 SO0Cax 80%
C 1.35 kWh S0Chin 30%
ko, kq, k- 0.0253,-2.94922, 8.0482

This OCP with strong nonlinearity in dynamics and dis-
continuity in switching between charge/discharge modes is
challenging to solve. To address this discontinuous nonlin-
ear problem, we employ the Legendre pseudospectral method
(LPM) and the knotting technique to convert the OCP into
a nonlinear programming (NLP) problem for more accurate
numerical computation.

III. LEGENDRE PSEUDOSPECTRAL METHOD
AND KNOTTING TECHNIQUE

The LPM is a global collocation method for converting OCP
into NLP [26]-[28]. To convert the OCP into an associated
NLP, it discretizes the OCP at orthogonal collocation points
and then employs global interpolating polynomials to approx-
imate states and control inputs. Compared with conventional
methods (e.g., shooting method), the LPM has better accuracy
and convergence speed [26]. It should be noted that the LPM
is highly accurate only for smooth problems, thus unable to
handle the nonsmooth OCP (15), which involves switching
between different modes, namely, charge and discharge [27].
Here, we first simplify the switching rule and then apply the
knotting technique to convert the OCP [27].

Since the initial and terminal states of the SOC must be the
same, there are two possible cases: 1) Both the engine and the
battery are used with no net change in battery energy, or 2) only
the engine is used, which is a special case of 1) with the battery
power always equal to zero. In the long run, there may be many
charge/discharge events, whose optimal profile is difficult to
obtain by this strong nonlinear and nonconvex OCP. Therefore,
here, we focus on only one charge/discharge event over a
shorter period of time. Under this simplification, the knotting
technique is then utilized to convert the nonsmooth problem.
Its fundamental idea is to divide the original OCP into two
smooth substages, corresponding to the charge and discharge
modes, and then, each of them is converted into an NLP
by the LPM. To ensure continuity of the states (e.g., vehicle
speed and SOC), connection constraints are added between the
consecutive stages and, thus, relink the two local trajectories
into an integrated continuous trajectory. The optimal results are
eventually obtained by the collaborative optimization of the two
substages. This technique can avoid accuracy loss compared
with using only one smoothing function to approximate a
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nonsmooth trajectory. The process of converting the OCP by
the LPM and the knotting technique is stated as follows. To be
concise, the initial time is denoted as Tg, and the terminal time
of the two substages is denoted as 7} and 75.

a) Conversion of Time Interval: The two stages are trans-

formed into a canonical interval [—1, 1] by
L 2t — (Ty + Ty-1) (16)
T, — T4
where g is 1 or 2.

b) Collocation Points and Approximation: The LPM em-
ploys Legendre—Gauss—Lobatto collocation points, which are
the roots of the derivative of an Nth-order Legendre polyno-
mial, together with two end points: —1 and 1. Each phase can
have a different number of collocation points, which is denoted
as N, + 1. The collocation points at the gth phase are denoted
as 74,5, where 1 =0,1,..., N,. The states s, v, and SOC are
discretized to

Sq,O Sq71 Sq7Nq
Xq= V.0 Vg1 A\ 17
Sq,O Sq,l Sq,Nq

Engine power P, and motor power P, are also discretized
to Peq,; and Py, ;. Note that we only optimize the discretized
states and control inputs; the dynamic x,(7) and u,(7) are
obtained by Lagrange interpolation at collocations points, i.e.,

Nq
xq(7) & Z Lgi(1)X q,i
i=0

Ngq
Ug(T) ~ Y Lyi(T)U (18)
1=0

where L, ;(7) are the Lagrange basis polynomials.

c) Conversion of the State-Space Equations: The differ-
ential state equations can be approximated by the differential
operation on the Lagrange basis polynomials, i.e.,

Ngq Ngq
q(tqr) = Y Lgi(rgi)Xgi=> DiXei  (19)
i=0 1=0

where k =0, 1,2,..., N, and DY is the differentiation matrix
with an explicit expression [26]. Then, the vehicle dynamics (4)
and battery dynamics (6) are converted into a series of equality
constraints at the collocation points, i.e.,

Nq
Z DySqi = ATy x Vg
i=0

N,

: P Prngi — Fr(Vyr)V
S DIV, = AT, cq.k + WJL\Z%/ (Vo) Vo
i=0 q,k

‘/OC - \/V:JQC - 4Iqu,k’ X Rint
2Rint x C

N’I
ZDZiS(M = —AT, (20)
i=0

where AT, = (T, — Ty—1)/2.
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d) Conversion of the Cost Function: The integral part
of the cost function is calculated by the Gaussian—Lobatto
quadrature; hence, the performance index is computed by

2

-y
q=1

where w, ; are the weighting coefficients of the Gaussian—
Lobatto quadrature, which is defined as [26]

N,
ATq Zk:qo wq,k’]:e (Peq,k)
Sa, N,

2y

1
2

Wy = | Lgg(T)dr = . 22

ok [(bk() Nq(Nq"’l)P]%rq(Tq,k) 22

e) Connection Constraints: Since the distance, velocity,
and SOC are continuous between the two stages, the following
constraints are added:

Si,ny —S2,0=0
Vin, —Vo0=0

SN, — S2,0=0. (23)

After these steps, the OCP (15) is converted into the following
NLP problem:

2

>
q=1

N,
AT(] Zkio wq,k]:e (Peq,k’)
Sa, N,

subject to

NLI
ZDZiSq,i = ATy X Vg
i=0

N,

) P Pong—Fr-(Vor)V,
ZDZNW = AanC cak t Tmak (Vo) Vo
: MV, 1
=0 q,

Ny 5
ZDqS ; = —AT, Voe = \/VOC — 4Pb‘1:k X Ring
i—0 ke ! 2Rine x C
P ,
Mv qu,k > 0
Pogr = q 7m
qu,k’nnm Pm,q,k <0
Vio="Vaon,
8170 = 32,N2

Si,n, =820
Vin, =Vag
SN, = S20
Pemin < Peg i < Pemax

Z’C,min < Z.C’ < Z'C,max (24’)
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where k,7 =0,1,2,..., Ny; ¢ = 1,2. The variables to be opti-
mized include traveling distance Sy 1, vehicle speed V ., SOC
of battery S, x, engine power P, 1, and motor power P, 1.
In essence, this NLP is a high-dimensional sparse-constrained
problem and is solved by the sequential quadratic programming
algorithm [29].

IV. OPTIMIZATION RESULTS

This section presents the fuel-optimal cruising strategies,
including their fuel-saving performance and the control rules
for the engine and the motor.

A. Speed-PnG Cruising Operation

Considering that the vehicle is expected to cruise at a certain
average speed, we first focus on the general case, in which the
vehicle speed is free. In this case, the average speed v must be
equal to the expected speed v, i.e.,

Sf
ty

U= = (25)

Ve.

The initial/final SOCs are set to 50%. The terminal time is fixed
to 20 s. The number of collocation points in each phase is set
to 15. Three cases, cruising at v, = 20, 60, and 120 km/h, are
studied. By using the LPM and the knotting technique, their
optimal profiles of speed fluctuation, SOC, and engine power
are obtained and shown in Fig. 4. Then, we make the following
observations.

1) Inthe cases of 20 and 60 km/h, the fuel-optimal operation
accelerates the vehicle to a higher speed first and then
coasts down to a lower speed, as shown in Fig. 4(a).
The speed fluctuations of the two cases are +26% and
4+9%, respectively. In Fig. 4(b), the SOC is constant for
the whole duration of the two cases, which means that no
energy is converted to the battery, and the battery/motor
systems are not used. In Fig. 4(c), the engine first runs
at high power, which approximately coincides with the
power of the sweet spot, and then switches to shutdown
with zero-power output.

Due to the fixed SOC and fluctuating speed, that is,
the vehicle speed pulses first and then glides, this optimal
strategy is called “Speed-PnG” operation, consisting of
the pulse phase and the glide phase.

This optimal strategy shows that 1) counter to the

intuition that cruising at a fixed speed is fuel optimal, the
true optimum is Speed-PnG operation; 2) when cruising
at low speeds (e.g., 20 km/h), the battery and the motor
are not used, and the optimal control rule for the engine
is to switch between the sweet spot and shut down,
corresponding to the pulse/glide phases.
In the case of 120 km/h, the vehicle speed, SOC, and
engine power are all constant. The optimal operation
is cruising at a fixed speed driven by the engine only.
This optimal strategy is called “CS” (constant speed)
operation.

2)
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Fig. 4. Optimization results. Speed-PnG strategy at 20 and 60 km/h and CS
strategy at 120 km/h. (a) Speed profile. (b) SOC. (c) Engine power.

To understand the fuel economy of Speed-PnG, we set the
CS operation as the benchmark. In the cases of 20 and 60 km/h,
the fuel consumption of using CS is 4.30 and 3.47 L/100 km, re-
spectively, dropping to 2.03 and 2.97 L/100 km if using Speed-
PnG. Therefore, Speed-PnG achieves a fuel savings of 52.7%
and 14.45% compared with CS, with a fuel-saving rate (7r)
defined as

Jcs — Jpna

100
Tos x 100%

nr = (26)
where Jcg and Jp, ¢ are fuel consumed by CS and PnG.

With expanding the three given examples to various average
cruising speeds, the fuel-saving rate of Speed-PnG and the cor-
responding average optimal engine power to pulse are shown
in Fig. 5. When €20, 104] km/h, the Speed-PnG strategy
achieves better fuel economy than CS, and the optimal oper-
ating engine power is approximately equal to the power of the
sweet spot.

4681

60 230 —
z
— 50 R =
R Speed-PnG to CS )
S z
g 40¢ N2 120 8
< o2 — ]
- 2 .
oo 30 + e él)
g P 5
5 2+ - =
% Lose fuel 7 10 OQ"
2 10 —*— Fuel saving benefit o
—6— Opt. power oy g
0r—- quer of svs‘leet spot ‘ "‘_"0—0—0—07— 0 E

20 40 60 80 100 120
Average velocity [km/h]

Fig. 5. Optimal fuel-saving rate and average engine power in the pulse phase
of Speed-PnG at different average cruising speeds.

=20 km/h —&—40 km/h

—=8—60 km/h — - — Power of sweet spot
55 ¢
54 -
53

52

SOC [%]

51

Time [s]

(a)

} A gap of about 7kW

Constant

—8—8—8—&8—8-—588

H
0
o
i
o
a

Engine switches to
shutdown

Engine power [kW]
S

L L L L |
0 20 40 60 80 100
Time [s]

(®)
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B. SOC-PnG Cruising Operation

In the Speed-PnG operation, the fluctuating speed is less
acceptable for human drivers. Hence, here, we tighten the
constraint on vehicle speed to cruising at a fixed speed rather
than pulse and glide, i.e.,

V= Ve 27

The terminal time is set to 100 s, and the initial/final SOCs
are set to 50%. Three cases, i.e., cruising at 20, 40, and 60 km/h,
are selected, and the optimization results are shown in Fig. 6,
which shows the following observations.

1) In the cases of 20 and 40 km/h, the engine first operates
at high power to maintain vehicle cruising and charge
the battery, with the SOC rising; then, the engine is shut
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Fig. 7. Optimal average engine power and fuel-saving rate of SOC-PnG at
different cruising speeds. (a) Optimal engine power. (b) Fuel savings compared
with the CS strategy.

down, and only the battery is used to drive the vehicle,
with the SOC dropping to the initial value.

Due to the fluctuating SOC, where the SOC pulses first
and then glides, this strategy is called “SOC-PnG” oper-
ation. Fig. 6(b) shows that the optimal engine power in
the pulse phase is 12.65 and 11.44 kW at 20 and 40 km/h,
respectively. They differ from the power of the sweet spot
(18.9 kW), which is generally considered to be optimal.
This result will be explained in the following section.
When cruising at 60 km/h, the SOC is constant (50%),
and the engine keeps operating at 6.13 kW, indicating that
the vehicle is driven by the engine only. Therefore, the
optimal operation is CS rather than SOC-PnG.

2)

In the first two cases, the fuel consumption using the SOC-
PnG strategies is 3.22 and 3.30 L/100 km, rising to 4.30 and
3.45 L/100 km if using CS, respectively. Thus, SOC-PnG
achieves fuel savings of 25.1% and 4.3% compared with CS.
With individually optimizing the problems at different cruising
speeds, the fuel-saving rate and optimal engine power to pulse
are shown in Fig. 7. When v < 48 km/h, SOC-PnG can save
fuel, and its optimal engine power is around 12 kW. As the
cruising speed increases, the fuel-saving rate continuously de-
creases, and, eventually, CS becomes optimal. The mechanism
of the given results is discussed in Section V.

To understand the optimal engine power deviating from the
sweet spot in Fig. 7(a), the case of keeping the engine operating
at the sweet spot (18.9 kW) to pulse is simulated in Fig. 7(b).
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Fig. 8. Comparison of Speed-PnG and SOC-PnG (real/ideal). (a) Fuel-saving
rate. (b) Average optimal acceleration.

It indicates that the fuel-saving rate drops about 3% compared
with the SOC-PnG at optimum. As a simplification, keeping
the engine running at fixed 12 kW only leads to less than
1% reduction. Overall, in the SOC-PnG operation, selecting
a proper lower engine power to pulse can achieve better fuel
performance than using the sweet spot.

C. Comparison Between Speed-PnG and SOC-PnG

As mentioned in the given optimizations, both Speed-PnG
and SOC-PnG can save fuel compared with CS in a particular
speed interval. Their optimal fuel-saving rates are shown in
Fig. 8(a), where the Speed-PnG strategy has better fuel econ-
omy than SOC-PnG. As the average speed increases, the fuel-
saving capacity of both operations decreases and eventually
vanishes.

For the SOC-PnG strategy, if the battery and the motor are
ideal (with 100% efficiency), which is denoted as SOC-PnG
(ideal), then we can operate the engine at the sweet spot to
charge the battery, without conversion loss. Theoretically, it
has the highest system efficiency. In Fig. 8(a), the Speed-
PnG strategy achieves similar fuel economy with SOC-PnG
(ideal), indicating that Speed-PnG is the most efficient mode
of operation.

Considering ride comfort, however, the Speed-PnG strategy
is less acceptable due to the fluctuating speed. The average
optimal accelerations of Speed-PnG and SOC-PnG at various
average cruising speeds are shown in Fig. 8(b). In practice, a
tradeoff between fuel economy and ride comfort is possible;
the compromise principles are proposed in Section VI.
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Fig. 9. Mechanism of Speed-PnG and SOC-PnG.

V. FUEL-SAVING MECHANISMS

Here, we focus on explaining the underlying mechanisms
of Speed-PnG and SOC-PnG by addressing the following
questions:

Q1) Why does Speed-PnG save fuel at a certain speed
interval, and why is it the most efficient operation?

Q2) Why can SOC-PnG save fuel, and why is its fuel-saving
capacity lower than that of Speed-PnG?

Q3) In Speed-PnG, why does the optimal control operate the
engine between the sweet spot and shut down without
using the battery/motor system?

Q4) In SOC-PnG, why does the engine not operate at the
sweet spot to minimize fuel consumption?

Fig. 9 is designed as the key figure for understanding the
mechanisms and answering the questions. The abscissa is
power; the ordinate is efficiency. If the vehicle cruises at a fixed
speed v, the demanded engine power is recorded as P,. Since
the engine always operates on the best BSFC line, point Fcg
stands for the corresponding engine efficiency of using the CS
strategy.

For QI, in Speed-PnG, the engine operates at the sweet
spot S with highest efficiency 7 in the pulse phase. In the
glide phase, the engine is shut down, and the vehicle coasts,
dissipating the stored kinetic energy, which is generated in the
pulse phase with efficiency 1s. Therefore, points S/G stand for
the pulse/glide phases, respectively. Ignoring the tiny difference
of total aerodynamic drag in Speed-PnG and CS, the average
engine power of Speed-PnG is equal to Pg; hence, point F,
indicates the average efficiency of Speed-PnG.

It is clear that the average efficiency (point E,) of Speed-PnG
is higher than that of CS (point E¢g). As the average cruising
speed increases (e.g., point P; moves to P)), the efficiency of
Speed-PnG (point E) remains fixed, whereas the efficiency of
CS (point Efg) increases. As a consequence, the fuel-saving
rate decreases. When point P; moves to Pg, the two strategies
have the same efficiency, at which point, Speed-PnG loses its
fuel benefit, and CS becomes the optimal operation.

In Speed-PnG, the vehicle body actually plays the role of
an energy buffer with variable kinetic energy, and the kinetic
energy can be “charged/discharged” with 100% efficiency, thus
making Speed-PnG the most efficient operation.
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For Q2, to be concise, here, we assume the following.

a) The motor efficiency 7, and the discharge/charge effi-
ciency nais/Meng Of the battery are fixed.

b) In the pulse phase, the engine operates at sweet spot .S to
charge the battery and drive the vehicle, although it is not
the optimum, as shown in Fig. 7.

In the glide phase, the engine is s