
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

System and Experiments of Model-Driven Motion
Planning and Control for Autonomous Vehicles

Shaobing Xu , Robert Zidek, Zhong Cao , Member, IEEE, Pingping Lu ,
Xinpeng Wang, Graduate Student Member, IEEE, Boqi Li , and Huei Peng

Abstract—This article presents a model-based motion planning
and control system for autonomous vehicles and its experimen-
tal validation. The system consists of four modules: 1) global
routing; 2) behavior planner; 3) local trajectory generation; and
4) trajectory tracking. The algorithm and software of each mod-
ule are detailed, including a behavior planner with unified models
to handle typical scenarios in both highway and urban driving, a
deterministic sampling algorithm for robust responsive trajectory
generation, and a dynamics-and-delay-aware preview algorithm
to achieve accurate trajectory tracking. The developed system is
implemented and tested at the Mcity test facility with a full-size
automated car and a dozen of challenging traffic scenarios.

Index Terms—Autonomous vehicles, behavior planner, deter-
ministic sampling, motion planning, preview control.

I. INTRODUCTION

A. Motivation

AUTONOMOUS vehicles saw significant development
efforts over the last two decades [1]–[3]. Wide deploy-

ments are not happening both because of high hardware costs
and performance challenges in perception, prediction, and
motion planning in complex situations.

This article focuses on motion planning and control, two
of the crucial functions for autonomous driving. Various algo-
rithms were proposed in the literature [4]–[8], which can be
roughly divided into model-based and data-driven approaches.
For example, the reinforcement learning design for highway
driving in our papers [5], [6]. The approach we follow in this
article is model based. Model-based approaches usually solve
the motion planning and control problem sequentially, e.g.,
stack of routing, decision making, trajectory planning, and

Manuscript received November 12, 2020; revised May 24, 2021; accepted
November 17, 2021. This work was supported by the TRI-Sponsored Project
“Intelligent and Automatic Motion Planning for Self-Driving Vehicles.” This
article was recommended by Associate Editor R. Roberts. (Corresponding
author: Shaobing Xu.)

Shaobing Xu, Pingping Lu, Xinpeng Wang, Boqi Li, and Huei Peng
are with the Department of Mechanical Engineering, University of
Michigan, Ann Arbor, MI 48109 USA (e-mail: xushao@umich.edu;
pingpinl@umich.edu; xinpengw@umich.edu; boqili@umich.edu; hpeng@
umich.edu).

Robert Zidek is with the Toyota Research Institute, Ann Arbor,
MI 48105 USA (e-mail: robert.zidek@tri.global).

Zhong Cao is with the School of Vehicle and Mobility, Tsinghua University,
Beijing 10083, China (e-mail: caoc15@mails.tsinghua.edu.cn).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TSMC.2021.3131141.

Digital Object Identifier 10.1109/TSMC.2021.3131141

control [4]. In the literature, many papers focused on a cer-
tain algorithm or improvement targeting one or two modules,
or concentrated on a specific scenario (e.g., left-turn, cut-in,
or merge) [4], [7]. However, gaps from the nearly indepen-
dent various algorithms to a unified system that covers the full
stack and can handle a variety of realistic driving situations do
exist. This article targets this gap and presents a model-based
motion planning and control stack for autonomous vehicles,
including algorithms, software, and simulation/field experi-
ments. Compared to the existing reports [1]–[3], this article
presents different algorithms and more experiments in complex
and challenging scenarios.

B. Literature Review of Motion Planning

There exist several reviews that summarize the state of the
art of motion planning for autonomous vehicles [4], [7], [8].
On the whole, time-independent path planning has been well-
solved using algorithms such as the graph-based planner (e.g.,
the Dijkstra algorithm, A∗ family, and state lattices) [9] and
the interpolating curve planner (e.g., Bezier, polynomial, and
spline) [10], [11]. For safety-critical tasks, the trajectory-
based planner, which specifies both path and speed profiles
that connect the initial state and a predefined terminal state,
is usually required [8]. One approach is to use numerical
nonlinear optimization [12], e.g., MPC [13]. Another typical
approach is the rapidly exploring random tree (RRT) and its
variants [14]. They can search nonconvex, high-dimensional
spaces by randomly building a space-filling tree to reach the
goal terminal state, and can also be considered as a Monte-
Carlo method to bias search into the largest Voronoi regions of
a graph in a configuration space. RRT had been implemented
in self-driving cars successfully, but the random search does
not well match the requirements of self-driving on structured
roads, which demands planned optimality (not randomness)
and human-like smooth operations. Different from the random
search and targeting a single fixed terminal state, Lacaze et al.
proposed a multiresolutional architecture for obstacle avoid-
ance in outdoor mobility [15]; this architecture uses offline
dynamical simulations to build massive precalculated trajecto-
ries, called ego-graph, corresponding to multiple permissible
terminal states. The planner runs recursively with a receding
horizon and the resulted trajectory can respond to obstacles
robustly and smoothly. Werling et al. leveraged this strategy
and proposed an optimal-control-based solution. It decouples
lateral and longitudinal motions in the Frenet coordinates of

2168-2216 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4127-2411
https://orcid.org/0000-0002-2243-5705
https://orcid.org/0000-0003-1486-7580
https://orcid.org/0000-0001-8959-1406
https://orcid.org/0000-0002-7684-1696

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

the street [16] and shows that a 5th-order polynomial con-
necting a given pair of initial/terminal states is optimal when
a simplified kinematic model and a jerk-based cost function
are used. In the implementation, the trajectory is solved by
sampling in the terminal manifolds. This article will leverage
and improve this approach to generate local trajectories.

Decision making refers to the strategy of interacting with
multiple other road users under the roadway constraint
over a time horizon. Existing decision-making algorithms
can be classified as semi-interactive [1], [2], [17]–[19] and
interactive [20], [21]. The former follows a two-layer structure,
i.e., prediction first and then decision [17]. It considers other
agents’ responses once in each cycle and ignores interactions
among the agents. In this strategy, model-based approaches
are frequently used, e.g., finite-state machine [1], [2] and risk
potential optimization [18]. The latter learns interactions from
data or experiences, e.g., using the partially observable Markov
decision process (POMDP) [21] or reinforcement learning [5],
in which historical data or failure cases parameterize the
involved hidden probability matrix or neural network. This
article adopts the semi-interactive strategy.

C. Contribution

The main contribution of this article is the systematic design
and simulation/field experiments of a model-based motion
planning and control stack that can be used to drive safely
and efficiently in multiple urban and highway traffic scenar-
ios. It consists of a hierarchical framework which comprises:
1) an A∗-based shortest time/distance routing module; 2) a
behavior planner with unified models that handle typical sce-
narios; 3) a deterministic sampling algorithm for trajectory
generation; and 4) a preview control algorithm that considers
vehicle dynamics, future road curvature, and system lag/delay
for accurate trajectory tracking. We will present experimental
results on a test vehicle interacting with both simulated and
real traffic.

The algorithms are declared as secondary contributions. The
A∗ is a widely used existing algorithm. The unified models of
the behavior planner and dynamics-and-delay-aware preview
tracking control are designed in our work. The deterministic
sampling trajectory generation leverages the approach in [16],
but we propose several improvements: new cost functions,
sampling strategy, inequality constraints based on collision and
road-departure considerations, and efficient constraint check-
ing methods. In addition, the approach in [16] handles driving
on highways only, or more accurately, on roads, while our
system can handle both highway and urban driving including
intersections.

The remainder of this article is organized as follows:
Section II presents the system framework. Sections III–VI
present the routing, trajectory generation, behavior planning,
and control algorithms, respectively. Experimental results are
reported in Section VII, and Section VIII concludes this article.

II. MOTION PLANNING AND CONTROL FRAMEWORK

As shown in Fig. 1, a self-driving system can include sev-
eral subsystems. This article focuses on the routing, behavior

Fig. 1. Framework of our motion planning and control system, i.e., the four
modules in the blue box.

planning, trajectory generation, and motion control modules;
other modules are not covered.

The routing module is responsible for finding a feasible or
optimal reference path from the origin to a given destination
using digital maps. The reference path is represented by a
sequence of lanes with entrance and exit, or a list of waypoints.

The behavior planner, also known as the decision maker in
some papers, provides farsighted higher level strategies over a
horizon for given scenarios such as yield, stop, lane change,
merge, and car following. These behavior-level strategies are
represented by a local target to be reached a few seconds
later, with reference latitude, longitude, speed, and acceleration
information to guide the vehicle’s movement.

The trajectory generation module optimizes the ego car’s
path and speed profile over a horizon (6 s in this article) to
pursue the local target given by the behavior planner under the
constraints of surrounding objects, drivable area, and vehicle
dynamics.

Given the planned trajectory, the motion control module
generates throttle/brake and steering commands to smoothly
track it. This article designs an optimal preview control that
considers vehicle dynamics, input delay, and steering lag. It
is able to achieve accurate and smooth tracking and increase
the stability margin. In the following four sections, we will
describe the design of each module.

III. MAP AND ROUTING

A. Digital Map

High-definition (HD) maps provide useful prior information
for highly automated vehicles. Here, we select the Mcity as
the target testing track and develop its HD map. As shown in
Fig. 2, it digitizes the following.

1) Road segments and type, i.e., highway, ramp, round-
about, and normal roads.

2) Lane features, i.e., centerline, width, lane marking type,
and speed limit.

3) Connection information, i.e., exit, entrance, priority, and
direction of turning of each connector.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: SYSTEM AND EXPERIMENTS OF MODEL-DRIVEN MOTION PLANNING AND CONTROL FOR AUTONOMOUS VEHICLES 3

Fig. 2. Developed HD Map of Mcity. The yellow dots are the waypoints and
the orange curves are the center lines of lanes or the yellow lane markings.

Fig. 3. Schematic diagram of the routing result (red circles/triangles) and
path smoothing.

4) Traffic signal information, i.e., stop line, light id, and
channel id corresponding to each lane.

5) Waypoints, including their id and position.
6) Crosswalk, including their position and shape.
7) Stop and yield signs.
This map may be different from the commercial HD maps

some companies are using (not yet standardized), but it
provides the necessary information for our purposes.

B. Routing and Path Smoothing

We implemented the shortest-distance and shortest-time
routing using the A∗ algorithm [9]. For the latter, the time
cost on each lane is estimated by its length and speed limit.
Temporary lane closure information is used to dynamically
correct the map. This article does not consider dynamic traffic,
but the routing algorithm considering the traffic, energy con-
sumption, and time/battery constraints was separately reported
in our previous paper [23].

As shown in Fig. 3, the routing module outputs a sequence
of exits or connectors, which specify the exiting waypoint of
the first lane and the entering waypoint of the next lane. We
then extract all waypoints from the origin to the destination.
The path of a connector is not available in the map; thus, we
use the Bezier curve to connect the exit and entrance to form
the path

P(z) = (1 − z)2P0 + 2(1 − z)zP1 + z2P2 (1)

where P ∈ R
2, P0/P2 stands for the exit/entrance, P1 is the

intersection of their tangents, and z ∈ [0, 1] is the variable of
the function. Usually, the waypoints within a lane are sparse,
refer to Fig. 2, so we use the Hermite spline to connect any

Fig. 4. Routing and path smoothing results. The green curve is the planned
reference path and the orange curves are road markings.

Fig. 5. Definition of the trajectory generation problem. The blue diamonds
stand for the local target. The orange spots mean the terminal position of a
trajectory.

two adjacent waypoints to smooth the reference path

P(z) =
(

2z3 − 3z2 + 1
)

p0 +
(

z3 − 2z2 + z
)

m0

+
(
−2z3 + 3z2

)
p1 +

(
z3 − z2

)
m1 (2)

where p/m ∈ R
2 is the position/tangent of a waypoint.

With these interpolation schemes, a smooth reference path is
obtained. In addition, the reference speed of each lane is set to
be the speed limit; the reference speed of a connector changes
linearly from the speed limit of the previous lane to the next.

C. Implementation

Fig. 4 shows our implementation of the routing and path
smoothing algorithms using C++, Qt, and OpenGL. Once
a destination is selected by clicking the map, the software
computes a smooth reference path. This process takes less
than 5 ms to finish. The rendering of the reference path and
the map is shown in Fig. 4.

IV. TRAJECTORY GENERATION

This section describes the deterministic sampling algorithm
for local trajectory generation. Note that we intentionally
present this section before the behavior planning in Section V
for better readability.

A. Problem Formulation

As shown in Fig. 5, the trajectory generation module aims
to optimize the local trajectory using four inputs: 1) local
target from the behavior planner; 2) reference path from
the routing module; 3) drivable area from the digital map;

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 6. Frenet (or street) coordinate system and motion decomposition.

and 4) information of obstacles including size and all poten-
tial trajectories from the perception, communication, or the
prediction module.

We formulate the trajectory generation as a receding horizon
optimal control problem (OCP)

J =
∫

L(x,u)dt + ∅(tf ,xf)

s.t.

ẋ = f (x,u)

C(x,u) ≤ 0

x(t0) = x0 (3)

where J, ∅, f , and C are the cost function, endpoint cost,
system dynamics, and constraints, respectively. x0 and xf

are the (given) initial and the (free) terminal states. To bet-
ter describe a trajectory, we introduce the Frenet (or street)
coordinate system βoγ , as shown in Fig. 6. It can decouple
the longitudinal and lateral motion, which are parallel to and
perpendicular to the reference path, denoted by β(t) and γ (t),
respectively. Note that this longitudinal/lateral motion differs
from the concepts of vehicle dynamics defined in the vehic-
ular coordinate system. With the decoupling, the longitudinal
or lateral kinematic motion is modeled as an integrator control
system,

ẋ(t) =
⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦x(t) +

⎡
⎣

0
0
1

⎤
⎦u(t) (4)

where x = [β, β̇, β̈] or [γ, γ̇ , γ̈] and u = ...

β or
...
γ is the

control input, the so-called jerk. Both β and γ are defined
in the time domain; their synthesis forms the final path in
the spatial domain. Note that this is a simplified kinematic
model for trajectory generation only, the resulted trajectory
will be checked by vehicle dynamics constraints and tracked
by controllers considering dynamics, refer to Section VI. The
hard constraints C we consider include the following six items.

1) Maximal/minimal vehicle speed v ∈ [vmin, vmax].
2) Longitudinal acceleration ax ∈ [ax,min, ax,max].
3) Curvature of trajectory ct ∈ [ct,min, ct,max].
4) Lateral acceleration ay ∈ [ay,min, ay,max].
5) Confined inside the drivable area.
6) No collision with other objects.
The constraints 1)–4) relate to the vehicle dynamics. The

cost function J is a critical component for trajectory plan-
ning since it directly identifies the quality of a trajectory.
In our design, five factors are considered, i.e., smoothness,
mobility (deviation from the desired target state), risk of leav-
ing the drivable area, risk of being too close to obstacles,

Fig. 7. Concept of deterministic sampling-based trajectory generation.

and consistency of the trajectories generated at two adjacent
time steps. The detailed design of J will be discussed in
Section IV-D.

B. Deterministic Sampling for Fast Computation

The trajectory generation problem is a nonlinear constrained
OCP. To achieve real-time performance, we leverage the sam-
pling strategy to solve it. The fundamental idea is to generate
a finite number of candidate trajectories first and then search
the optimal solution within the candidate set. This strategy
can deliver a near-optimal solution (within grid accuracy) effi-
ciently. It contains three steps, as shown in Fig. 7: 1) generate
candidate trajectory set; 2) check the constraints C to filter
out infeasible ones; and 3) evaluate all feasible candidates
and select the optimal one. The development of emergency
maneuvers when no feasible trajectory is available is left for
future work.

We denote the sampling space as � = [t, β, β̇, β̈, γ, γ̇ , γ̈]
T

,
the local target as �r = [tr, βr, β̇r, β̈r, γr, γ̇r, γ̈r]

T
, and its

upper and lower bounds as �max and �min. Note that the target
�r is a reference goal only; the vehicle does not need to hit it
exactly. To generate different candidate trajectories, the main
strategy is to sample various terminal states �f around the
target �r, which then parameterize β(t)/γ (t) and form the set
of trajectories. To determine the trajectory β/γ that connects
the initial state and a sampled terminal state, we leverage the
terminal manifold method proposed in [16], which indicated
that the optimal trajectory is a 5th-degree polynomial if the
goal is to minimize the control input and deviation from the
terminal states.

For each sampling cycle, the initial state in the space �,
denoted by �0, is known a priori; what we need is to sam-
ple �f in �. Here, we use an asymmetrical rule to sample,
i.e., split the sampling space [�min,�max] into [�min,�r) and
(�r,�max], and then independently sample in the two sub-
spaces with equal gaps. For instance, sampling γ in [γmin, γr)

obeys

{γi|γi = ηγmin + (1 − η)γr, η = i/Nl, i = 1, . . . , Nl}. (5)

Note that γ = γr (the local target �r) is always sampled.
Thus, the total number is Nl + Nu + 1, where Nl and Nu are
the number of sampling points in [γmin, γr) and (γr, γ max].
One example of sampling in a subspace [t, β, γ] is shown in
Fig. 8.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: SYSTEM AND EXPERIMENTS OF MODEL-DRIVEN MOTION PLANNING AND CONTROL FOR AUTONOMOUS VEHICLES 5

Fig. 8. Example of sampling in the subspace [t, β, γ]. The blue diamond
stands for the local target, each blue/gray point stands for a terminal state
sampled in the 3-D space [t, β, γ].

Fig. 9. Sampled trajectories. (a) 17 samples with 17 different γf . (b) 85 sam-
ples. (c) Full 1224 trajectories. The curve’s color indicates the cost, green for
lower, and red for higher cost. The bold yellow is the optima. The bold solid
red curve is the reference path. The white curves are the boundaries of the
drivable area.

Once �f is sampled, the motion γ is described by

γ (t) =
5∑

i=0

ρit
i (6)

where ρ0 = γ0, ρ1 = γ̇0, and ρ2 = 0.5γ̈0. The other three
coefficients are determined by the sampled terminal state γf ,
γ̇f , and γ̈f . β(t) follows the same mechanism.

In our implementation, tr is set to 6 s; namely, planning
for 6 s into the future. The sampling parameters are listed
in Table I. We sample in a 3-dimensional (3-D) subspace
[t, β, γ]; γ̇f and γ̈f are set to 0, meaning no lateral movement
at t = tf . β̇f and β̈f are set by the behavior planner according
to the specific scenarios. In total, 1224 trajectories are sam-
pled, as shown in Fig. 9. This algorithm is called deterministic
sampling trajectory generation in the rest of this article.

Note that γ and β are defined in the Frenet coordinate; they
should be merged with the global reference path that can have
arbitrary shapes and is usually given by a set of discrete points.
Our strategy is to discretize the sampled trajectory with time
gap �t and then merge γ , β, and the reference path point
by point. In this article, �t is set to 0.25 s. An example of
the merged trajectories in the global earth coordinate and the
curvature ct of the optimal trajectory is shown in Fig. 10.

C. Constraint Checking

The constraints C are used to remove infeasible trajecto-
ries before searching for the optimal trajectory. We check
pointwise for each discretized trajectory. For constraints (1)

Fig. 10. Merge with the reference path: (a) merging the sampled trajecto-
ries with the curved reference path at a roundabout, 85 samples and (b) the
calculated curvature of the optimal trajectory.

Fig. 11. Constraint check. (a) Full set of 1224 trajectories; the gray curves
are the 611 infeasible trajectories identified by the constraints (1)–(4). (b)
613 feasible trajectories. (c) 274 feasible trajectories after checking the driv-
able area constraint 5. (d) 66 feasible trajectories after checking the collision
constraint 6.

TABLE I
PARAMETER SETTING OF DETERMINISTIC SAMPLING

and (2), the closed form of vehicle speed v is

v =
([

1 − crγ
]2

γ̇ 2 + β̇2
)0.5

(7)

where cr is the curvature of the reference path. To reduce com-
putation load, β̇ and β̈ are used to approximate the vehicle
speed v and the longitudinal acceleration v̇. For the con-
straint (4), the lateral acceleration ay is estimated by β̇2ct.
Fig. 11(1) and (2) shows an example, in which 611 out
of 1224 trajectories were found to be infeasible by the
constraints (1)–(4).

To check constraint (5) for staying inside drivable areas,
we assume the reference path near the car has a fixed radius
Rr, as shown in Fig. 12; then use a circle with radius Rv to
represent the frontal area of the car. The gap from the car to
the boundary of the drivable area is estimated by the distance
db from the circle with radius Rv to the boundary

db = Rb − Rv −
√

ξ2 + l2c + 2lcξsin(�θt + θs)

ξ = γ + Rr

θs = −asin
(
lf /Rt

)
(8)

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 12. Left: gap from the vehicle to the boundary of the drivable area.
Right: vehicle slip angle estimated by the kinematics model.

Fig. 13. Instant-to-period strategy for collision checking.

where Rb and Rt are the radii of curvature of the boundary
and the planned trajectory, respectively, lc/lf is the distance
from the ego car’s center of gravity (c.g.) to the circle with
radius Rv/rear axle; θs is the slip angle of the car and esti-
mated by the kinematic model shown in Fig. 12; �θt is the
heading angle gap between the trajectory and the reference
path. Fig. 11(c) shows 274 trajectories which pass checking
the constraint (5).

For constraint (6), several methods have been proposed for
fast collision check, e.g., using circles to approximate the
objects’ and the ego car’s geometries [24]. In their implemen-
tations, the ego car at every future discretized time instant t is
checked against all objects at the same instant t, called instant-
to-instant checking. To avoid omissions, frequent checking is
required; namely, �t should be much smaller than 0.25 s used
in this article. Different from the numerous instant-to-instant
checking, we propose an instant-to-period checking strategy.
As shown in Fig. 13, at instant t, the ego car is represented by
one rectangle over the period [t−�t, t+�t], namely the rectan-
gle with a minimum area that covers the ego car’s geometry at
instant t−�t, t, and t+�t. Then, check if this larger rectangle
intersects with the rectangle at instant t for each potential path
of each object, see Fig. 14. When calculating the geometry in
the unified earth coordinate, the slip angle of ego car is esti-
mated by the kinematic model shown in Fig. 12. The checking
window moves forward with a step �t, which is set to 0.25 s.
This strategy significantly reduces the number of checking and
then improves real-time performance. Fig. 11(d) shows the
final 66 feasible trajectories after the collision check.

D. Design of the Cost Function

The cost function considers the following five criteria.

Fig. 14. Collision check of one trajectory during a right turn. The varying
sizes of the rectangles in the left figure are caused by the vehicle slip angle
and the road curvature.

1) Smoothness, measured by the jerk and the maximum
lateral acceleration aym = max{ay(t), t∈[0, tf]}, i.e.,

Js = waa2
ym +

∫ tf

0

(
wγ

...
γ

2 + wβ

...

β
2
)

dτ (9)

where wa, wγ , and wβ are weighting coefficients. Note γ

and β are polynomials; thus, their jerk has closed-form
expressions.

2) Mobility or Deviation From the Target State: If a trajec-
tory exactly hits the given target, it is considered to have
the best mobility. Otherwise, the deviation is penalized

Jm = (
�r − �f

)Twm
(
�r − �f

)
(10)

where wm is the weight matrix.
3) Risk of Leaving the Drivable Area: Being too close to

the boundary of the drivable area is considered a risk.
We quantify this risk using the minimal distance dbm

from a trajectory to the boundary over [0, tf]

Jd =
⎧⎨
⎩

discarded, dbm < 0.1 m
0, dbm > dbm

wd
(
dbm − dbm

)2
, else

(11)

where dbm is a constant and dbm is calculated by (8).
4) Risk of Being Too Close to Obstacles: Being too close

to an obstacle is also penalized, i.e.,

Jo =
⎧⎨
⎩

discarded, dom < 0.2 m
0, dom > dom

wo
(
dom − dom

)2
, else

(12)

where dom is the minimal distance from a trajectory to all
objects over [0, tf] and dom is a constant. Equation (12)
mainly considers the lateral gap, as a trajectory lead-
ing to small time headway has been discarded in the
collision check.

5) Consistency of the Optimal Trajectories: Frivolous
change of the optimal trajectories of two adjacent steps
should be avoided. This is measured by the variation of
terminal states between a candidate �f and the previous
optimal trajectory �p

J� = (
�f − �p

)Tw�

(
�f − �p

)
(13)

where w� is the weight matrix.
The sum of these five sub costs yields the final cost

J = Js + Jm + Jd + Jo + J�. (14)

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: SYSTEM AND EXPERIMENTS OF MODEL-DRIVEN MOTION PLANNING AND CONTROL FOR AUTONOMOUS VEHICLES 7

TABLE II
SYMBOLS AND VALUES USED IN THE TRAJECTORY GENERATION

Fig. 15. Software of the deterministic sampling trajectory generation. The
white rectangles show the multiple potential trajectories of each object (note:
two scenarios are presented to provide more information).

All feasible trajectories are evaluated based on this cost
function and the optimal one is selected. The related
parameters are set in Table II. Examples can be found
in Figs. 9–11.

E. Implementation

We use C++ and the robot operating system (ROS) to
implement the deterministic sampling trajectory generation, as
shown in Fig. 15. This software receives the ROS messages of
the local target, reference path, and other objects from the cor-
responding modules and then broadcasts the optimal trajectory.
The computation time per step is usually less than 100 ms.
Refer to Fig. 23 for computation times from the field tests.

V. BEHAVIOR PLANNER

This section describes the target driving scenarios and
behavior planning strategies. We cover the typical scenarios of:
1) driving on highways, including ramp merging, lane change,
exiting from highways, car-following and 2) driving in urban
areas, including responding to traffic lights, stop signs, pedes-
trians, unprotected left turns, and entering/exiting roundabouts
and intersections. In the following, three unified models are
presented to handle these scenarios.

A. Merge, Exit, and Lane Change

Merge and exit are treated as special lane changes within
limited drivable areas. Thus, we consider them as one model.

Fig. 16. Target setting of merge, exit, or lane change.

The first decision is when to trigger a lane change. For the
merge scenario, a lane change is triggered when the ego car
enters the ramp; the exit is triggered when the distance from
the vehicle to the exit ramp is less than

dexit = ςNLtLvLm (15)

where NL is the number of lanes to cross, vLm is the speed
limit, ς is a factor proportional to traffic density, and tL is the
response time.

Once a lane change is triggered, the local target, reference
path, and drivable area should be set. The reference path is
switched from the ego lane to the target lane and the drivable
area is set by the map. Then, a key decision is to identify the
merge gap to take for the lane change. As shown in Fig. 16,
all observable gaps in the target lane are identified first. Their
validity is then checked using the gap length dg and vehicles’
speeds, i.e., valid if

dg > dthd

dthd = min
(
dmax, max

(
dmin, tmvg

))

vg = (
vgf + vgr

)
/2 (16)

where vgf /vgr is the front/rear car’s speed of a gap, vg is called
the gap’s speed, and tm is a preset time constant.

To find the best gap, the following optimization problem is
designed, where the criterion Jg assesses each valid gap:

max
gap

Jg = min
(
Tg,Tmax

) − wa|ae|
Tg = dg/vg (17)

where Tg is the time headway of the gap and wa is the weight
set to 5 if ae > 0, otherwise set to 2. ae is called the equivalent
acceleration, by which the ego car can reach the reference
point of the gap (the yellow square in Fig. 16) after te (set to
6 s here) assuming other cars cruise at constant speeds, i.e.,

ae = 2
�β + �vte

t 2
e

�β = βg − β

�v = vg − β̇. (18)

Once the optimal gap is selected, the local target after tr
seconds (the blue diamond) is set to

βr = trvg + �β

β̇r = vg, γr = 0, tr = 6 s. (19)

It is worth noting that even if the target is not well selected,
the deterministic sampling-based trajectory generation will
select the optimal trajectory among the candidate set and

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 17. Target setting of car following.

ensure safety. One example can be found in Fig. 19, where
the ego car decides to merge into the front gap due to its
higher speed.

B. Car Following

In the car following scenario, we predict the lead vehicle’s
longitudinal motion βlv by a fixed-acceleration rule:

β̇lv(t) = min
(
β̇lv, max, β̇lv(0) + alvt

)

βlv(t) =
∫ tr

0
β̇lv(t)dt (20)

where alv is the acceleration of the lead vehicle. If alv is not
available, we assume it is 0. The ego car is set to maintain a
safe time headway to the lead vehicle, as shown in Fig. 17,
so the local target is set to

β̇r = β̇lv(tr) − Tcf alv

βr = βlv(tr) − βs − Tcf β̇r

tr = 6 s,

γr = 0 (21)

where Tcf is the desired time headway and βs is a constant.

C. Yielding

Different from driving on highways or other local roads, the
key of driving around intersections is to properly yield to other
road users. Here, we generalize the typical scenarios of driving
at intersection or junction (e.g., protected or unprotected left
turns, right turns, yield to stop signs/pedestrians/traffic lights,
and entering/exiting roundabouts) as a unified model shown
in Fig. 18, called the yielding model. To decide the behavior,
three steps are considered: 1) identify the priority (or right-of-
way) of each connector by traffic rules; 2) determine yield or
not; and 3) set the local target point.

1) Priority Identification: The priority of a connector can
be set dynamically or statically. At a signalized intersection,
the priority is controlled by the traffic lights. At an all-way
stop intersection, vehicles follow the first-come–first-go prin-
ciple. Intersections without traffic lights or stop signs follow
fixed priority order defined in the digital maps, e.g., p1–p5 in
Fig. 18(a), the smaller the number, the higher the priority.

2) Yield or Not: Two modes of yield are considered, called
stop- and no-stop-to-yield. In the former, the ego vehicle needs
to completely stop at a stop line before the yield strategy
applies, e.g., facing a red light or a stop sign. In this case, if
there are any valid vehicles on the connector (including part
of its starting lanes) with higher priority, then the ego car will
yield. In the no-stop mode, e.g., merging into a roundabout,
the vehicle does not have to stop first. Instead, it can adjust
its speed to yield. The yield decision is based on the time to
collision (ttc), i.e., yield if

ttcego − ttcobj ∈ [ttcmin, ttcmax]. (22)

Fig. 18. Model of yield at intersections. (a) Schematic diagram. (b) Example
scenarios: merging into a roundabout, left turn, right turn, and stop sign;
noting that the blue/yellow squares are the calculated yield points, the yellow
triangles are the set local targets, which are different from (a).

TABLE III
SYMBOLS AND VALUES USED IN THE BEHAVIOR PLANNER

Remark: The decision to yield to pedestrians is made more
conservatively. Not only the time to collision but also the dis-
tance to collision and the state of approaching or leaving are
considered.

3) Set Local Target: In the stop-to-yield mode, the target is

β̇r = 0

βr = βmax = βd

tr = β̇0/|ad|,
γr = 0 (23)

where βd is the distance to the stop line and ad is the desired
acceleration. For the no-stop-to-yield mode, in theory, it is
not necessary to adjust the default target because the trajec-
tory generation algorithm has the ability of speed adaptation
to other objects. However, to enhance robustness, we add
a rule to adjust the target: calculate a safe yield point that
keeps a safe distance to the conflicting connector, as shown in
Fig. 18(a), and then use it to replace the stop line in the stop-
to-yield model. The setting of local target keeps the same. If
the conflict in (22) disappears, then the yielding ends.

In summary, the presented unified models provide higher
level behavior guidance in the selected typical scenarios. The
targets act as reference points, and improve the rationality of
driving behaviors, while the underlying collision avoidance is
handled by the trajectory generation module. All the parameter
values are shown in Table III.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: SYSTEM AND EXPERIMENTS OF MODEL-DRIVEN MOTION PLANNING AND CONTROL FOR AUTONOMOUS VEHICLES 9

Fig. 19. Interface of our routing and behavior planning software. It shows the
gap selection when merging into a highway. The small green square indicates
the best gap with the highest score of 1.75, the red squares indicate gap
candidates with lower scores, and the gray square indicates an infeasible gap.
The yellow triangle indicates the local target.

D. Implementation

The routing and behavior planning software is shown
in Fig. 19. This software combines information from the
map, perception, prediction, and communication modules, then
determines the scenarios and outputs the local target and
reference path for trajectory generation.

VI. MOTION CONTROL

We design a dynamics-and-delay-aware preview control for
accurate and smooth trajectory tracking. The trajectory track-
ing is split into path and speed tracking. For the path tracking
or steering control, the model we use is [25]

ẋ = Ax + Bδ(t − τd) + Dct

where

x = [
ey, ėy, eϕ, ėϕ, δr

]T

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 −σ1
mv

σ1
m

σ2
mv

2Cαf
m

0 0 0 1 0

0 σ2
Izv

−σ 2
Iz

σ3
Izv

2lf Cαf
Iz

0 0 0 0 −1/τ

⎤
⎥⎥⎥⎥⎥⎦

,

D =

⎡
⎢⎢⎢⎢⎣

0
σ2/m − v2

0
σ3/Iz

0

⎤
⎥⎥⎥⎥⎦

B = [
0, 0, 0, 0, 1/τ

]T

σ1 = 2
(
Cαf + Cαr

)

σ2 = −2
(
lfCαf − lrCαr

)

σ3 = −2
(

l2f Cαf + l2rCαr

)
. (24)

In this model, ey and eϕ are the lateral offset and the heading
angle error. τd is the time delay and τ is the time constant of
the first-order lag of the steering system, i.e.,

τ δ̇r(t) = −δr(t) + δ(t − τd) (25)

TABLE IV
SYMBOLS AND DEFINITIONS OF THE VEHICLE DYNAMICS MODEL

where δr is the actual steering angle and δ is the steering
command. Parameter values are listed in Table IV. Note that
all vehicle dynamics, input delay (about 200 ms), and steering
lag are considered for better performance, which makes our
control different from the typical controls in the literature.

To facilitate the controller design, the continuous-time
system is converted into a discrete-time system with a fixed
sampling time �τ and zero-order hold

x(k + 1) = Ax(k) + Bδ(k − N) + Dct(k) (26)

where N is the number of delay steps. Based on this model,
we formulate the path-tracking task as an OCP with cost
function

J(x, δ) = 0.5
∞∑

k=0

xT(k)Qx(k) + Rδ2(k)

Q = diag[q1, . . . , q4, 0]

ct(i) = 0, i ∈ [k + N + 1,∞) (27)

where R ∈ R is a positive weighting factor and ct(i) denotes
the curvature of the planned trajectory at time step i; curvatures
beyond N time steps in the future are assumed to be 0.

The key to the control design is to solve this nonlin-
ear time-delay problem efficiently. Different from numerical
optimizations, we pursue closed-form control laws and lever-
age the preview control theory to solve it. To do so, all
delayed inputs and the previewed ct are converted into system
states, i.e.,
⎡
⎣

x(k + 1)

�(k + 1)

Ct(k + 1)

⎤
⎦ =

⎡
⎣

A B� DC

O A� O
O O AC

⎤
⎦

⎡
⎣

x(k)
�(k)
Ct(k)

⎤
⎦ +

⎡
⎣

O
B�

O

⎤
⎦δ(k)

with

�(k) = [δ(k − N), . . . , δ(k − 2), δ(k − 1)]T ∈ R
N

Ct(k) = [ct(k), ct(k + 1), . . . , ct(k + N)]T ∈ R
N+1

B� = [B, O] ∈ R
5×N ,

DC = [D, O] ∈ R
5×N

A� =
[

O I(N−1)

0 O

]
∈ R

N×N ,

AC =
[

O I(N−1)

0 O

]
∈ R

N×N

B� = [0, 0, . . . , 1]T ∈ R
N (28)

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 20. Motion control software. In the left section, users can select what
information to display (e.g., input or tracking errors) and enable/disable pre-
view control, barrier control, and data record. In the right section, the system
states and control results are displayed.

where x, B, D ∈ R
5×1, and O/I stands for the zero/identity

matrix. This augmentation strategy converts the original
nonlinear time-delay OCP into an augmented linear delay-
free system with the state dimension increasing from 5 to
6 + N +N. As a result, the augmented problem becomes
a standard linear quadratic regulator (LQR), whose optimal
control is

δ∗(k) = −
errors︷ ︸︸ ︷

Kb,1−4 xe(k)−
steering angle︷ ︸︸ ︷

Kb,5 δr(k)

−
N−1∑
i=0

Kb,6+iδ(k − N + i)

︸ ︷︷ ︸
delayed commands

−
N∑

i=0

Kf ,ict(k + i)

︸ ︷︷ ︸
feedforward

(29)

where xe = [ey, ėy, eϕ, ėϕ]T are the tracking errors, Kb is the
feedback gain vector, and Kf is the feedforward/preview gain
vector. This control law has a closed-form expression and is
computationally efficient.

Note that this control did not consider constraints in track-
ing errors. To bound the tracking error, refer to our previous
paper [26], in which a barrier control is developed to super-
vise the proposed control. It is activated if and only if the error
is approaching the boundary, and then adds well-calculated
steering to guarantee bounded errors. Finally, we use C++
and ROS to implement and integrate the designed trajectory
tracking controllers, as shown in Fig. 20. It runs at a cycle
time of 40 ms.

VII. EXPERIMENTAL RESULTS

The above four modules are implemented and tested on the
Mcity self-driving platform, a hybrid Lincoln MKZ, as shown
in Fig. 21. It is a shared platform we developed for researchers
at the University of Michigan. This car is equipped with a set of
sensors (e.g., 32-channel LiDAR, Radars, cameras, Mobileye,
Ibeo, and RTK) and DSRC/4G-based communication. The by-
wire control enables automatic manipulation of throttle/brake
pedals, transmission, steering wheel, and turn signals.

In the following, we first test the motion control module,
then test the motion planning and control system in both high-
way and urban driving in Mcity, as reported in Section B and

Fig. 21. Mcity automated vehicle platform—a hybrid Lincoln MKZ.

Fig. 22. Testing results of the preview control and the pure pursuit control.
(a) Test results. (b) Snapshot. The floating pendant indicates a radical lateral
acceleration.

the supplementary file. In the test, the SUMO is used to gen-
erate virtual surrounding cars and challenging scenarios [22].
In Section C, another real self-driving car is used to challenge
the ego car. It is recommended to watch the four supplemental
videos in the Appendix to better understand the following
content.

A. Test of Motion Control Module

To validate the designed dynamics-and-delay-aware preview
control, we apply it to track a sinusoidal trajectory (amplitude
2 m, period 20π m), as shown in Fig. 22. The vehicle speed is
set to 60 km/h, corresponding to a maximal lateral acceleration
of about 5 m/s2, which is high for typical human driving.
Compared to the classic pure pursuit control with look-ahead
time being 0.6 and 1.0 s [27], the designed control achieved
much lower tracking errors, i.e., within ±20 cm, see the blue
ey profile in Fig. 22(a). The pure pursuit control (0.6 s) is
nearly unstable due to the smaller look-ahead distance, and
the maximal tracking error is >60 cm.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: SYSTEM AND EXPERIMENTS OF MODEL-DRIVEN MOTION PLANNING AND CONTROL FOR AUTONOMOUS VEHICLES 11

Fig. 23. Scenarios and testing results of driving on Mcity highway with
simulated traffic.

B. Highway Driving

As shown in Fig. 23, the track consists of four carriageways
and one merging ramp. The length of the highway is about
250 m, limiting the reference speed to 30 km/h. The traffic is
randomly generated by SUMO with a density up to 32 cars
per lane per km. Their driving behaviors are governed by the
SUMO default models with stochastic initializations.

In the test, the ego car launches from the merging ramp
and experiences 8 scenarios, i.e., merge into highway (denoted
as s1 in Fig. 23), car-follow (s2), avoid two static obstacles
(straw bales, s4), avoid a car generated suddenly (s5), exit the
highway (s7), and avoid an aggressive following car (s8). To
further increase the challenge, we add two phantom objects:
1) a road construction area partially blocking the rightmost
lane (s3) and 2) a car parked on the second lane (s6). The
phantom objects can impede the ego car but are transparent to
other cars, which will create challenging scenarios. The sur-
rounding cars’ motion is predicted on top of two assumptions:
1) they keep constant acceleration and 2) they could go in all
possible lanes defined by the map, and aim to approach the
lane centers within a limited time; namely, multiple paths are
allowed for each object. The test results are shown in Fig. 23.

To better understand the result, we start from s4, i.e., avoid-
ing two static obstacles. Some key moments are highlighted
by the snapshots in Fig. 24, in which the first row shows the
interface of the behavior planner, marked by timestamps at
the right-bottom corner. The bottom row shows the interface
of trajectory generation; the two numbers at the right-bottom
corners represent the index of the optimal trajectory and the
number of total valid trajectories out of the 1224 samples.
Figs. 25 and 26 follow the same definition as Fig. 24.

In Fig. 24, we can see the flexible lateral motion, the cost
of each valid trajectory indicated by color, and how the two

Fig. 24. Snapshots of scenario s4, i.e., avoid two static obstacles. 1) The
first row shows the behavior planning, where the green/yellow rectangles stand
for surrounding obstacles. The yellow triangles are the local targets and key
waypoints and 2) the bottom row shows the trajectory generation. The bold
yellow curve is the optimal trajectory, the bold red curve is the reference path.
The white curves define the drivable area.

Fig. 25. Snapshots of scenario s1, i.e., merge into the highway. 1) The first
two rows show the behavior planning. The red rectangles indicate the target
merging gap. The small green squares show the target merging point and 2) the
bottom row shows the trajectory generation. The white arrows highlight the
boundaries of the changing drivable area.

obstacles trigger rejection of the sampled trajectories that will
lead to collisions. The ego car avoids the two static obstacles
safely with a hat-shaped lateral movement without significant
speed reduction, refer to γ0 and β̇0 profiles in Fig. 23 (s4).

Different from s4, other scenarios involve dynamic traffic.
In s1, the ego car merges into the traffic successfully with a
smooth path and speed profile, as shown in Figs. 23 and 25.
In Fig. 23 (s1), the step change of γ0 indicates that the lane
change occurred and the reference path is switched to the new
target lane. The profile of β̇0 shows that the vehicle acceler-
ates from 24 to 30 km/h to merge into the traffic. In Fig. 25,
the small green squares indicate the selected merging gap and
the target merging point. The bottom row shows all valid tra-
jectories at each moment, all of them are inside the changing
drivable area and have no collision with other cars.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 26. Snapshots of scenarios s5, s6, and s7, i.e., avoid a car generated
suddenly (at 89 s), avoid a phantom car parked in the lane (from 93 to 102 s),
and exit the highway (at 107 s). The first two rows show the behavior planning.
The white arrows highlight the static phantom obstacle. The yellow rectangles
indicate they are the leading cars. The red rectangles indicate the merging gap.

Fig. 26 show three scenarios, i.e., s5 (at 89 s), s6 (93–102 s),
and s7 (at 107 s). In s5, the SUMO environment suddenly
generates a car driving 28 km/h, 5 m before the ego car. The
ego car avoids collision and brakes with −1.2 m/s2 to increase
the time headway. Similar to s1, in s7 the car executes another
lane change to exit the highway. The vehicle decelerates to
24 km/h to merge into the selected gap. The duration of the
lane change is about 5 s, close to the typical human drivers’
operation.

s6 is an atypical and challenging scenario, refer to
Fig. 26 from 93 to 102 s. The ego car needs to avoid not
only the static phantom obstacle (highlighted by the white
arrows in Fig. 26) but also other moving cars. We can observe
the active and smooth adjustment in both vehicle speed β̇0
and lateral offset γ0 in Figs. 23 and 26. The setting of s3 is
similar to s6, but their speed and path profiles are signifi-
cantly different, see Fig. 23, indicating the good adaptability
and robustness of the system. In both cases, we did not
change the reference path (i.e., no lane change command);
thus, the behavior can be regarded as two overtake maneu-
vers. The maximal lateral offset γ0 in s3 and s6 are 1.2 and
−3.2 m, respectively, which achieve maintaining safe lateral
gaps to the obstacles and minimizing the deviation from the
reference path. In s8, a following car is approaching aggres-
sively, the ego car responds to it properly with a strong
acceleration.

In summary, the developed system delivered reasonable,
responsive, and smooth behaviors in these scenarios, while
safely avoiding static and moving obstacles. The computation
time is less than 0.1 s per cycle as shown in Fig. 23(d). We also
test the system in urban driving with another 8 selected scenar-
ios, refer to the supplementary file (limited by the length of the
manuscript). This test further illustrates the system’s capabil-
ity of flexibly adjusting vehicle path and speed profiles against
dynamic traffic (even when other cars violate traffic rules or act
improperly), and validates the behavior competence of driving
in urban areas.

Fig. 27. Scenario definition of interacting with a real surrounding car.

Fig. 28. Testing results of interacting with a real car.

C. Experiment Using Real Surrounding Car at Mcity

As shown in Fig. 27, the ego car runs along the blue
path at Mcity. Five scenarios are highlighted, i.e., merge into
highway (s1), handle an aggressive cut-in (s2), avoid two static
real obstacles (s3), avoid a left-turning car at an unprotected
intersection (s4, traffic lights are disabled), and merge into
a roundabout (s5). Different from the previous tests, we use
another real self-driving Lincoln MKZ to challenge the ego
car. This car is specifically developed to test other autonomous
vehicles [28], called the challenger in the following. It adjusts
its motion to achieve a preset challenge level, quantified by
criteria such as speed gap and time margin.

The experimental results are shown in Fig. 28. The ego car
safely avoids all potential collisions. For example, in s1, the
challenger deliberately blocks the ego car in the merging area.
The ego car decelerates to about 10 km/h and merges success-
fully before reaching the end of the lane. In s2, the challenger
cuts in and starts decelerating when the distance gap is only
7 m; the ego car brakes to avoid a collision. In s4, the chal-
lenger takes an aggressive illegal left turn in front of the ego
car. The ego car does brake timely to avoid the conflict even
when it has the right of way. In s5, the ego car yields to the
challenger in the roundabout by slowing down to 5 km/h and
then enters the roundabout safely without stopping.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: SYSTEM AND EXPERIMENTS OF MODEL-DRIVEN MOTION PLANNING AND CONTROL FOR AUTONOMOUS VEHICLES 13

VIII. CONCLUSION

This article presented the algorithms, software, and exper-
imental validations of a model-driven motion planning and
control system for self-driving amidst dynamic and station-
ary obstacles. The system was designed in a hierarchical
framework that consists of routing, behavior planning, trajec-
tory generation, and trajectory tracking modules. The system
considers safety constraints and achieves smooth operations
due to the deterministic sampling trajectory optimization
and the dynamics-and-delay-aware preview tracking control.
The implementation was tested both through simulations and
experiments.

Note that the designed system does not cover the prediction
of other objects’ motion and intent nor the uncertainties
due to sensing/perception/prediction, both are potential future
research topics. The design of emergency maneuvers when no
feasible trajectory is available is also left for future work.

APPENDIX

VIDEOS

Four videos of the tests are available in the manuscript
system, or access with the following YouTube links.

1) Comparison of the preview control and the pure pursuit
control (https://youtu.be/27JR1kpHcL4).

2) Test on highway (https://youtu.be/b9aLQYevdRw).
3) Test of urban driving (https://youtu.be/5Gz9mqVdsyM).
4) Test using a real other car (https://youtu.be/

Rr5MxSeoCvM).

ACKNOWLEDGMENT

Toyota Research Institute (TRI) provided funds to assist the
authors with their research but this article solely reflects the
opinions and conclusions of its authors and not TRI or any
other Toyota entity.

REFERENCES

[1] S. Thrun et al., “Stanley: The robot that won the DARPA grand
challenge,” J. Field Robot., vol. 23, no. 9, pp. 661–692, 2006.

[2] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” J. Field Robot., vol. 25, no. 8, pp. 425–466,
2008.

[3] S. Kato et al., “Autoware on board: Enabling autonomous vehicles with
embedded systems,” in Proc. ACM/IEEE 9th Int. Conf. Cyber-Phys.
Syst., 2018, pp. 287–296.

[4] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annu. Rev. Control Robot. Auton.
Syst., vol. 1, pp. 187–210, May 2018.

[5] Z. Cao et al., “Highway exiting planner for automated vehicles using
reinforcement learning,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2,
pp. 990–1000, Feb. 2021.

[6] Z. Cao, S. Xu, H. Peng, D. Yang, and R. Zidek, “Confidence-
aware reinforcement learning for self-driving cars,” IEEE Trans. Intell.
Transport. Syst., doi: 10.1109/TITS.2021.3069497. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9397429

[7] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, Mar. 2016.

[8] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion
planning methods for autonomous on-road driving: State-of-the-art and
future research directions,” Transp. Res. C Emerg. Technol., vol. 60,
pp. 416–442, Nov. 2015.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, Jul. 1968.

[10] W. Xu, J. Wei, J. Dolan, H. Zhao, and H. Zha, “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in Proc.
IEEE ICRA, May 2012, pp. 2061–2067.

[11] D. Gonzalez, J. Perez, R. Lattarulo, V. Milanes, and F. Nashashibi,
“Continuous curvature planning with obstacle avoidance capabilities in
urban scenarios,” in Proc. IEEE 7th Int. ITSC, 2014, pp. 1430–1435.

[12] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha—A local, continuous method,” in Proc. IEEE Intell. Veh. Symp.,
2014, pp. 450–457.

[13] S. Xu, S. E. Li, K. Deng, S. Li, and B. Cheng, “A unified pseu-
dospectral computational framework for optimal control of road vehi-
cles,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 4, pp. 1499–1510,
Aug. 2015.

[14] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic plan-
ning,” Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[15] A. Lacaze, Y. Moscovitz, N. DeClaris, and K. Murphy, “Path plan-
ning for autonomous vehicles driving over rough terrain,” in Proc.
IEEE ISIC/CIRA/ISAS Joint Conf., Gaithersburg, MD, USA, Sep. 1998,
pp. 50–55.

[16] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds,”
Int. J. Robot. Res., vol. 31, no. 3, pp. 346–359, 2012.

[17] N. E. Du Toit and J. W. Burdick, “Robot motion planning in
dynamic, uncertain environments,” IEEE Trans. Robot., vol. 28, no. 1,
pp. 101–115, Feb. 2012.

[18] P. Raksincharoensak, T. Hasegawa, and M. Nagai, “Motion planning
and control of autonomous driving intelligence system based on risk
potential optimization framework,” Int. J. Autom. Eng., vol. 7, no. 1,
pp. 53–60, 2016.

[19] N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and
A. R. Girard, “Game theoretic modeling of driver and vehicle
interactions for verification and validation of autonomous vehicle con-
trol systems,” IEEE Trans. Control Syst. Technol., vol. 26, no. 5,
pp. 1782–1797, Sep. 2018.

[20] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson,
“Multipolicy decision-making for autonomous driving via changepoint-
based behavior prediction: Theory and experiment,” Auton. Robots,
vol. 41, no. 6, pp. 1367–1382, 2017.

[21] R. A. E. Zidek and I. V. Kolmanovsky, “Optimal driving policies for
autonomous vehicles based on stochastic drift counteraction,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 290–296, 2017.

[22] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO—
Simulation of urban mobility: An overview,” in Proc. SIMUL 3rd Int.
Conf. Adv. Syst. Simulat., 2011, pp. 1–6.

[23] B. Li, S. Xu, and H. Peng, “Eco-routing for plug-in hybrid electric
vehicles in large urban transportation network,” in Proc. IEEE Int. Conf.
Intell. Transp. Syst., 2020, pp. 1508–1513.

[24] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” in Proc. IEEE Intell. Veh. Symp., 2010, pp. 518–522.

[25] S. Xu and H. Peng, “Design, analysis, and experiments of preview path
tracking control for autonomous vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 1, pp. 48–58, Jan. 2020.

[26] S. Xu, H. Peng, P. Lu, M. Zhu, and Y. Tang, “Design and experiments
of safeguard protected preview lane keeping control for autonomous
vehicles,” IEEE Access, vol. 8, pp. 29944–29953, 2020.

[27] R. C. Coulter, “Implementation of the pure pursuit path tracking algo-
rithm,” Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Rep. CMU-RI-TR-92-01, 1992.

[28] X. Wang, Y. Dong, S. Xu, H Peng, F. Wang, and Z. Liu, “Behavioral
competence tests for highly automated vehicles,” in Proc. IEEE Intell.
Veh. Symp., 2020, pp. 1323–1329.

Shaobing Xu received the Ph.D. degree in mechan-
ical engineering from Tsinghua University, Beijing,
China, in 2016.

He is currently an Assistant Research Scientist
with the Department of Mechanical Engineering
and Mcity, University of Michigan, Ann Arbor,
MI, USA. His research focuses on vehicle motion
control, decision making, and path planning for
autonomous vehicles.

Dr. Xu was a recipient of the outstanding Ph.D.
Dissertation Award of Tsinghua University and the

Best Paper Award of AVEC’2018.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/TITS.2021.3069497

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Robert Zidek received the Ph.D. degree in
aerospace engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2017.

He currently develops autonomous driving soft-
ware as a Research Scientist and a Manager with
the Toyota Research Institute, Ann Arbor. His team
focuses on building decision-making capabilities for
L4 and L5 autonomous driving systems, includ-
ing higher level behavior planning and navigation,
generating trajectory planning problems, and final
trajectory selection.

Zhong Cao (Member, IEEE) received the B.S.
degree in automotive engineering from Tsinghua
University, Beijing, China, in 2015, where he is
currently pursuing the Ph.D. degree in automotive
engineering.

He was a visiting Ph.D. student with the
University of Michigan, Ann Arbor, MI, USA,
from 2017 to 2019. His research interests include
connected automated vehicles, driving environment
modeling, and driving cognition.

Pingping Lu received the Ph.D. degree in commu-
nication and information system from the Institute of
Electronics, Chinese Academic of Sciences, Beijing,
China, in 2016.

She is currently a Postdoctoral Researcher
with the Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI, USA. Her
research interests include object detection and scene
understanding for autonomous vehicles, and high-
resolution synthetic aperture radar image processing.

Xinpeng Wang (Graduate Student Member, IEEE)
received the B.S. degree in automation from
Tsinghua University, Beijing, China, in 2017. He
is currently pursuing the Ph.D. degree in mechan-
ical engineering with the University of Michigan,
Ann Arbor, MI, USA.

His research focuses on the control and evaluation
of highly automated vehicles.

Boqi Li received the B.S. degree in mechanical
engineering from the University of Illinois Urbana–
Champaign, Champaign, IL, USA, in 2015, and
the M.S. degree in mechanical engineering from
Stanford University, Stanford, CA, USA, in 2017. He
is currently pursuing the Ph.D. degree in mechanical
engineering with the University of Michigan, Ann
Arbor, MI, USA.

Huei Peng received the Ph.D. degree in mechan-
ical engineering from the University of California,
Berkeley, CA, USA, in 1992.

He is currently a Professor with the Department
of Mechanical Engineering, University of Michigan,
Ann Arbor, MI, USA, where he is the Director
of Mcity. His current research focuses include
design and control of electrified vehicles, and con-
nected/automated vehicles. His research interests
include adaptive control and optimal control, with
emphasis on their applications to vehicular and

transportation systems.
Prof. Peng is both an SAE Fellow and an ASME Fellow.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 22,2022 at 09:35:31 UTC from IEEE Xplore. Restrictions apply.

