
Abstract— This paper presents a computational framework 
to solve optimal control problems (OCPs) using Legendre 
Pseudospectral (PS) method and its application to obtain 
eco-driving strategies for ground vehicles. Both control and 
state variables of OCPs are approximated by Lagrange 
interpolating polynomials at the Legendre-Gauss-Lobatto (LGL) 
collocation points. The OCP is converted into a nonlinear 
programming (NLP) problem, and numerically solved by 
matured optimization algorithms. To implement the PS method, 
we developed a computational package, called Pseudospectral 
Optimal control Problem Solver (POPS) in Matlab environment. 
Further, the POPS is applied to obtain fuel-optimized driving 
strategies for automated vehicles in hilly road conditions. 

Index Terms—Optimal control, Legendre Pseudospectral 
method, eco-driving.

I. INTRODUCTION

Due to the increasing demands on improving vehicle 
performance, the design of optimal control strategies for 
vehicles attracted more and more attentions. Typical examples 
include trajectory optimization for automated vehicles, fuel 
optimized eco-driving, power management for HEVs/EVs, 
and optimal control for active suspensions, etc. [1], [2]. In 
engineering practice, efficient numerical solvers for 
aforementioned optimal control problems (OCPs) are 
extremely important for reducing workload and cost in 
designing advanced control strategies.  

The main methods to obtain the fuel optimized eco-driving 
strategies are dynamic programming and direct methods [3], 
[4], [5], [6]. For example, Kuriyama et al. optimized the speed 
and acceleration for electric vehicles in the ramp condition 
using dynamic programming [3]; Kamal et al. used the model 
predictive control to obtain the eco-acceleration in up-down 
slopes condition, the OCPs are solved by traditional direct 
methods [4]. In this paper, we use and implement Legendre 
Pseudospectral (PS) method to obtain eco-driving strategies. 
Compared to the traditional direct methods to OCP, e.g. 
shooting method and collocation method, the pseudospectral 
(PS) method is more attractive due to it merits on lower 
sensitivity to initial guess and faster convergence to optimal 
solution [7]. Dynamic programming exist the drawbacks that 
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it suffers from the curse of dimensionality and holds low 
computational efficiency [8].  

In 1995, Elnagar et al. first introduced the concept of PS 
method by employing Lagrange polynomials to approximate 
states and control variables [10]. Since 2000, Fahroo, Ross, 
Rao et al. intensively studied the PS method, and obtained 
many important theoretical results, e.g., convector mapping 
theorem, convergence, and costate estimation [11], [12], [13], 
[14], [15]. There are generally four types of PS variants: Gauss 
method, Radau method, Legendre method, Chebyshev method 
[11]. The basic principle of the PS methods is to approximate 
state and control variables through global interpolating 
polynomials and convert the OCP into a nonlinear 
programming (NLP) problem at orthogonal collocation points 
[9], [10], [11]. Ross et al. showed that the formulated NLP 
problems can converge to the original OCP in spectral 
accuracy [16]. Lloyd further obtained the formulation of 
spectral accuracies for different kinds of functions 
summarized as follows [17]. For infinitely differentiable 
function, the spectral accuracy is given by        for every 
 ∈ Z , where   denotes the number of collocation points. 
For analytic function, the convergence will be faster at the rate 
of      for some constant 0    1. The spectral accuracy 
increases as the smoothness of functions increases. 
Huntington et al. compared the performance of first three 
types of PS. The comparison indicates that Gauss and Radau 
methods have similar computational accuracy, and they have 
better co-state estimation capabilities than Legendre method 
[18]. In fact, these three methods have both advantages and 
disadvantages for different OCPs. The Legendre method has 
better performance for OCPs with non-free boundary 
conditions, while Gauss and Radau methods may not converge 
as indicated by [11]. For infinite-horizon OCPs, Radau 
method is more applicable [14] since   1 is a singular point 
after transforming the infinite horizon into finite 
horizon  1,1 . Today the PS method has been successfully 
applied to problems in control engineering, particularly in 
aerospace engineering. Some PS based OCP solvers are also 
commercially available, e.g., DIDO [19], GPOPS [20], 
PSOPT [21] and PROPT [22]. The DIDO is developed by the 
team of Ross using Legendre PS method [19]. The GPOPS is 
developed by the team of Rao using Gauss and Radau PS 
method [20]. The PSOPT is developed by the team of Becerra, 
which is written in C++ using direct collocation method with 
both global and local polynomials [21]. The PROPT is 
developed by Tomlab Optimization using Gauss and 
Chebyshev PS method [22].  

The main contribution of this paper is to present a 
computational framework to obtain the fuel-optimized 
strategies using Legendre pseudospectral method, and to 
implement the method by developed a universal solver in 
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Matlab environment. The developed solver is called 
Pseudospectral Optimal control Problem Solver (POPS), 
which is a good option to users who pursue a free Legendre 
pseudospectral solver for their complex optimal control 
problem. In Section II, we briefly introduce the Legendre PS 
method as well as how to numerically compute the collocation 
points. In Section III, we describe the characteristics of the 
POPS. In Section IV, we apply the POPS to obtain the 
fuel-optimized driving strategies for automated vehicles. 

II. PSEUDOSPECTRAL METHOD

An OCP is to find an optimal control law     ∈     such 
that the system moves from one state to another with minimal 
performance index. The Bolza-typed OCP is given as 

min      ∅      ,            ,     ,       
  . (1) 

s.t. 

            ,     ,   ,
       ,      ,   ,     0,

        ,     ,    0,
          ,     ,    0,

where  ∈   denotes the time,  ∈     denotes the state 
vector,  ∈     denotes the control vector,   ∙ denotes the 
state function, ∅ ∙ denotes the Mayer performance index, 
  ∙  denotes the Lagrange performance index,   ∙  denotes 
the initial and final constraints,     ∙  and       ∙ denote the 
equality and inequality path constraints, respectively. 

A. Implementation framework 
In Legendre PS method, the state and control variables are 

approximated by Lagrange interpolating polynomials at 
Legendre Gauss Lobatto (LGL) points. The state space 
equations are enforced into equality constraints at the LGL 
points. The integral of cost function is calculated by the 
Gauss-Lobatto quadrature rule. Then the OCP is converted 
into the NLP problem that can be solved by available 
optimization solvers. The detailed framework is described 
below.  

Step 1: Time-domain transformation 
For the sake of simplicity, we first transform the time 

domain    ,     to the canonical interval  1,1  by 

   2                ,  ∈   1,1 . (2) 

Step 2: Collocation and discretization 
The LGL points come from the roots of orthogonal 

polynomials, which help avoid the Runge phenomena [23]. 
Let       denote the Legendre polynomials of order   [18], 
defined as 

       
   !

  
       1  . (3) 

The LGL points are defined as     1,     1, and   
for being the roots of        for   1,2, … ,   1. Clearly, 
these    1  LGL points are also the roots of  1           . 
Accurate calculation of LGL points is important for the 
successful implementation of pseudospectral transcription. Up 
to now, there is no explicit formula to compute the roots of 

      . Instead, we adopt an iterative numerical method to 
compute these roots in section II-B. 

The state variable      and control variable      are 
discretized at points    ,   , … ,    . The discretized state 
vectors are    ,  , … ,     and the discretized control vectors 
are    ,  , … ,    , where          and         . Then 
we approximate      and      using 

          ∑            ,
          ∑            , (4) 

where       denotes Lagrange interpolating basis functions, 

      ∏                   ,   . (5) 

Step 3: State space equation transformation  
The derivative of state variables is approximated by a 

differentiation matrix multiplied with discretized state 
variables, i.e. 

              ∑               ∑          , (6) 

where   0,1,2,⋯ ,  and        ∈             
denotes the differentiation matrix [11], defined as 

    
  
 
  

      
             

,    
     1 4⁄ ,     0

    1 4⁄ ,      
0,          

. (7) 

Now the state space equation can be enforced as the 
following    1  equality constraints at LGL points 

∑                
     ,   ,     0. (8) 

Step 4: Performance index transformation 
The performance index (1) is transformed using the Gauss- 

Lobatto quadrature rule 

  ∅   ,          
 ∑       ,  ,        , (9) 

where   denotes the integration weight given by 

          
      

             
. (10) 

The Gauss-Lobatto quadrature is critical to ensure the 
accuracy of transforming the integral. It is well known that the 
residual in Gauss-Lobatto quadrature is [23] 

                        !  

           !        . (11) 

Thus, by using    1  LGL points, the quadrature residual is 
equal to zero for any polynomials with order less than 
 2  1 . 
Step 5: OCP to NLP problem conversion 

Using aforementioned steps, the OCP is converted to the 
following NLP problem 

min  ,  
  ∅   ,          

 ∑       ,   ,        . (12) 

s.t. 
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 ∑                
     ,   ,      

  ,
‖    ,   ,   ,    ‖   ,
       ,   ,        ,
        ,  ,     0,

where  ,   0,⋯ , . The equality constraints are imposed at 
all points including two endpoints. A scalar   is used to relax 
the equality constraints to avoid infeasibility. The scalar   can 
be selected as [24] 

     1    , (13) 

where   implies that the optimal state variable has continuous 
   1 th order classical derivatives, α is usually set as 3/2. 
There are           optimization variables in NLP 
problem (12). For free terminal time   , we can also take    as 
an additional unknown variable. The converted NLP problem 
is a high-dimensional sparse optimization problem. Many 
known sparse NLP solvers can be used to solve this problem, 
e.g., SNOPT [25]. 

B. Numerical computation of collocation points 
Since there is no explicit expression for the roots of       , 

directly solving        through Legendre polynomials has 
very low accuracy. We employ the quasi-Newton algorithm to 
iteratively obtain the roots of        [26]. The quasi-Newton 
method includes two main parts: choosing initial guess and 
designing the updating law. Let       1           . The 
initial guess for iteration is chosen as the poles of N-order 
Chebyshev polynomial, 

      |          ⁄   , (14) 

where   0,1,⋯ , . The updating law is designed as 

        ∆  , (15) 

where   denotes the step index, ∆   is the length of each 
iteration. The ∆   is mathematically expressed as 

∆                                . (16) 

Note that (16) needs to compute the values of 
      and          by using the recursive relation of 
Legendre polynomial [23], i.e. 

             
            

 
           , (17) 

where   3,4,⋯ , . In summary, the computation 
algorithm for LGL collocation points is: 

1) Initial points are determined using (14). 
2) For step  , 

a) Recursively compute        using (17) with initial 
conditions        1;         ;  

b) Use (15) and (16) to iteratively compute     . 
3) Stop if   ‖       ‖   . 

The differentiation matrices and integration weights can be 
calculated by (7) and (10) respectively with accurate 
calculated LGL points. 

III. PSEUDO-SPECTRAL OPTIMAL CONTROL PROBLEM 
SOLVER (POPS) 

A. Introduction 
A software package is developed in Matlab environment, 

called Pseudospectral Optimal control Problem Solver (POPS), 
to numerically calculate the optimal solution of generic OCPs. 
It consists of four modules: 1) User configuration module 
including OCP description and solver parameter setup; 2) 
Module for converting OCP into NLP problem; 3) Module to 
solve NLP problem; 4) Module for interacting with users, 
including data saving, figure drawing, etc. The POPS is 
applicable to solve OCPs with: 1) both linear and nonlinear; 2) 
smooth functions or non-smoothing functions that can be 
written in multi-phase from; 3) free, fixed, or constrained 
initial state, terminal state and terminal time; 4) equality or 
inequality constraints, differentiation-typed or integration 
-typed constraints; 5) Mayer, Lagrange, or Bolza-typed 
performance index. The POPS is compatible with other 
Matlab toolboxes, and users can call POPS in other Matlab 
applications. It also provides a large amount of flexibility for 
users to configure their own problems. The authors can 
provide a free copy of POPS to interested readers for 
non-commercial purposes. If necessary, one can send the 
requests to the corresponding author (Dr. Shengbo Eben Li, 
lisb04@gmail.com) for a free copy. 

B. Example for POPS 
To verify the performance of POPS, a high order nonlinear 

OCP about trajectory optimization for aircraft is selected. The 
study of the numerical method for solving this kind of problem 
started as early as 1964 [27]. The optimization problem of this 
case study is formulated as 

min         . (18) 

s.t. 
     ,

     / ,
        ⁄     ⁄   sin   ,
          ⁄   cos   ,
  ,  ,   ,          1 0 0 1 ,
   ,        0,   /     .  ,

       |  |  ⁄ ,
where   1,   0.1405,    1, |  |  0.0749 , and
   3.32 . This problem is strongly nonlinear and also 
time-varying. It is difficult to obtain its optimal solution by 
constructing and solving differential equations through the 
first-order necessary condition.  

The POPS is employed below to solve this problem. We 
first verify the efficiency for computing LGL collocation 
points as described in section II-B. For the case study 
considered here, we run POPS in Matlab 2012a with 3.2 GHz 
CPU, and set   10  . Computation time for choosing 40, 
70, or 500 collocation points is 22 ms, 31 ms, or 35 ms, 
respectively. This means the computational efficiency for 
obtaining LGL collocation points based on quasi-Newton 
method satisfies the common requirements of computational 
resources. 
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In the following we choose 70 collocation points for 
running POPS to solve the optimization problem (18). The 
optimal trajectories of state and control variables obtained 
from POPS are shown in Fig. 1. The total CPU time for 
running POPS is 2.54 seconds. The optimal performance 
index   is obtained as -1.52527, which is consistent with the 
value -1.525 obtained using DIDO solver [28]. In Fig. 2, we 
depict the performance indexes obtained from POPS with 
different number of collocation points. It is observed from Fig. 
2 that the performance index nearly approaches the optimal 
value as the number of collocation points is greater than 40, 
which is also consistent with the observations from [28]. 

Figure 1. Optimal trajectories for OCP (18) 

Figure 2. Optimal J with different numbers of nodes 

IV. APPLICATION TO FUEL-OPTIMIZED AUTOMATED 
VEHICLES 

For ground vehicles, fuel-saving techniques have been 
enthusiastically studied over the past decades. One important 
topic is the eco-driving strategy. It was demonstrated that 
driving styles can change fuel efficiency by up to 10% in 
normal traffic [29]. The fuel-optimized automation aims to 
implement proper control to vehicles to minimize fuel 
consumption during travelling. The design of such strategies is 
in essential an OCP. This section considers a typical case 
study, i.e. cruise control in hilly road conditions. The used 
vehicle is a passenger car equipped with a 2.0L gasoline 
engine and a continuous variable transmission (CVT).  

A.  Fuel-optimized cruise control on hilly road
The vehicle runs on a hilly road with both uphill and 

downhill. As shown in Fig. 3, road AB is flat with length   , 
road BC is a hilly section with horizontal length   and height 
 , and road CD is flat with length   . There is a traffic light at 
the end point D such that the green light is only on for 
 ∈      ,      . The goal is to travel from point A to point D 
with minimal fuel consumption while subjecting to the 
constraints that vehicle must pass through point D during 
  ∈      ,       and the velocity should be bounded in 
 ∈      ,      . 

Figure 3. Setup of fuel optimized cruise control problem 

For the passenger car, the longitudinal dynamic model is 
given as 

          ⁄        ,
   0.5             cos    sin    , (19) 

where    denotes the transmission ratio,    denotes the final 
gear ratio,    denotes the driveline efficiency,    denotes the 
engine torque,   denotes rotating mass coefficient,   denotes 
the total mass of vehicle,    denotes aerodynamic drag 
coefficient,    denotes air density,    denotes frontal area of 
vehicle,   denotes vehicle velocity,   denotes the rolling 
resistance coefficient,    denotes the road slope. By assuming 
no clutch sliding, the following relationship between engine 
speed    and vehicle velocity   holds 

   60      2   ⁄ . (20) 

The distance  , velocity  , and acceleration   are related 
as 

    cos   ,
    .  (21) 

The engine fuel injection rate is an analytical model 
coming from the least-square fitting of engine brake specific 
fuel consumption (BSFC) map 

     ,    ∑ ∑      ∑       
    

      
             , (22) 

where   is the fitting coefficients. The engine BSFC curve is 
shown as Fig. 4. The optimal BSFC line (i.e., E-line) of engine 
is fitted as 

               1000  , (23) 

where      is the fitting coefficient, and   1/3  is the 
exponent of fitting function. The optimal E-line is also shown 
in Fig. 4. It is assumed that the CVT ratio is accurately 
controlled such that the engine always works along the 
optimal BSFC line for any output power. 

L2

H

L3
L1A B C D
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Figure 4. Brake specific fuel consumption map 

The OCP is formulated as 

min          d  d ⁄       
0 . (24) 

s.t. 
    cos   ,

                ⁄      ⁄ ,
   60      2   ⁄ ,

           1000   0,
              ,
              ,
           ,
            ,

  0  0,
              ,

  0    ,
where state variables include the distance   and velocity  , 
and control variables include engine torque    and 
transmission ratio   . The parameters are listed in TABLE. I. 

TABLE. I SIMULATION PARAMETERS

Para Value Para Value 
  0.316   50 m
  2.22 m   200 m
  1.226 kg/m3   100 m
 1600 kg  8 m
 0.028   25/50/70 km/h
 1.2     15 km/h
  3.863     80 km/h
  0.9     20 s
 0.307 m     35 s

     /   1000/6000 rpm   0.005 
     /   0.4/2.6 

The POPS is applied to solve the OCP (24) under the 
condition of 50 collocation points. Three different initial 
velocities are considered, 25 km/h, 50km/h, and 75km/h. The 
optimization results are given below. For three different initial 
velocities, the fuel consumptions are 37.71g, 27.22g, and 
16.75g, respectively; the travelling time to point D is 33.65s, 
30.17s, and 23.92s, respectively. Fig. 5 depicts the solutions of 
distance  , velocity  , and engine torque   . 

a) Driving distance versus time

b) Engine torque versus driving distance 

c) Velocity versus driving distance 

d) Acceleration versus driving distance 

e) Fuel consumption versus driving distance 

Figure 5. POPS optimization results 

It is observed from Fig. 5 that on road AB, the vehicle 
keeps accelerating to a high speed; afterwards, engine 
gradually reduces its power to slow down vehicle. On the 
uphill, the vehicle velocity drops quickly; on the downhill, the 
vehicle regains high speed; on road CD, the engine torque 
remains small to let the vehicle coast down to point D. During 
driving on uphill, kinetic energy is transformed into potential 
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energy, thus largely reducing the vehicle velocity. During 
driving on downhill, the vehicle releases potential energy to 
accelerate. 

V. CONCLUSION

In this paper, we proposed the computational framework 
and implementation of Legendre PS method and applied it to 
obtain the fuel-optimized strategies. The PS method has lower 
sensitivity to initial guess, faster convergence rate, and higher 
accuracy compared to traditional direct methods, which has 
the potential to promote the development of vehicle optimal 
control, e.g. power management for HEVs/EVs, optimal 
control for active suspensions, trajectory optimization for 
automated vehicles, and fuel optimized eco-driving. The main 
idea of PS method is to convert the OCP into a NLP problem, 
which is then numerically solved by matured optimization 
algorithms. A software package (called POPS) is developed 
using Legendre PS method in Matlab environment, suitable 
for various types of OCPs. It is compatible with other Matlab 
toolboxes and free to users with non-commercial purposes. An 
example of obtain optimal strategies for automated vehicles is 
used to verify the performance of POPS. 
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